Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

Overview

FCN.tensorflow

Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs).

The implementation is largely based on the reference code provided by the authors of the paper link. The model was applied on the Scene Parsing Challenge dataset provided by MIT http://sceneparsing.csail.mit.edu/.

  1. Prerequisites
  2. Results
  3. Observations
  4. Useful links

Prerequisites

  • The results were obtained after training for ~6-7 hrs on a 12GB TitanX.
  • The code was originally written and tested with tensorflow0.11 and python2.7. The tf.summary calls have been updated to work with tensorflow version 0.12. To work with older versions of tensorflow use branch tf.0.11_compatible.
  • Some of the problems while working with tensorflow1.0 and in windows have been discussed in Issue #9.
  • To train model simply execute python FCN.py
  • To visualize results for a random batch of images use flag --mode=visualize
  • debug flag can be set during training to add information regarding activations, gradients, variables etc.
  • The IPython notebook in logs folder can be used to view results in color as below.

Results

Results were obtained by training the model in batches of 2 with resized image of 256x256. Note that although the training is done at this image size - Nothing prevents the model from working on arbitrary sized images. No post processing was done on the predicted images. Training was done for 9 epochs - The shorter training time explains why certain concepts seem semantically understood by the model while others were not. Results below are from randomly chosen images from validation dataset.

Pretty much used the same network design as in the reference model implementation of the paper in caffe. The weights for the new layers added were initialized with small values, and the learning was done using Adam Optimizer (Learning rate = 1e-4).

Observations

  • The small batch size was necessary to fit the training model in memory but explains the slow learning
  • Concepts that had many examples seem to be correctly identified and segmented - in the example above you can see that cars, persons were identified better. I believe this can be solved by training for longer epochs.
  • Also the resizing of images cause loss of information - you can notice this in the fact smaller objects are segmented with less accuracy.

Now for the gradients,

  • If you closely watch the gradients you will notice the inital training is almost entirely on the new layers added - it is only after these layers are reasonably trained do we see the VGG layers get some gradient flow. This is understandable as changes the new layers affect the loss objective much more in the beginning.
  • The earlier layers of the netowrk are initialized with VGG weights and so conceptually would require less tuning unless the train data is extremely varied - which in this case is not.
  • The first layer of convolutional model captures low level information and since this entrirely dataset dependent you notice the gradients adjusting the first layer weights to accustom the model to the dataset.
  • The other conv layers from VGG have very small gradients flowing as the concepts captured here are good enough for our end objective - Segmentation.
  • This is the core reason Transfer Learning works so well. Just thought of pointing this out while here.

Useful Links

  • Video of the presentaion given by the authors on the paper - link
Owner
Sarath Shekkizhar
PhD Student at University of Southern California; Interests: Graphs, Machine Learning
Sarath Shekkizhar
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022