BookNLP, a natural language processing pipeline for books

Overview

BookNLP

BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including:

  • Part-of-speech tagging
  • Dependency parsing
  • Entity recognition
  • Character name clustering (e.g., "Tom", "Tom Sawyer", "Mr. Sawyer", "Thomas Sawyer" -> TOM_SAWYER) and coreference resolution
  • Quotation speaker identification
  • Supersense tagging (e.g., "animal", "artifact", "body", "cognition", etc.)
  • Event tagging
  • Referential gender inference (TOM_SAWYER -> he/him/his)

BookNLP ships with two models, both with identical architectures but different underlying BERT sizes. The larger and more accurate big model is fit for GPUs and multi-core computers; the faster small model is more appropriate for personal computers. See the table below for a comparison of the difference, both in terms of overall speed and in accuracy for the tasks that BookNLP performs.

Small Big
Entity tagging (F1) 88.2 90.0
Supersense tagging (F1) 73.2 76.2
Event tagging (F1) 70.6 74.1
Coreference resolution (Avg. F1) 76.4 79.0
Speaker attribution (B3) 86.4 89.9
CPU time, 2019 MacBook Pro (mins.)* 3.6 15.4
CPU time, 10-core server (mins.)* 2.4 5.2
GPU time, Titan RTX (mins.)* 2.1 2.2

*timings measure speed to run BookNLP on a sample book of The Secret Garden (99K tokens). To explore running BookNLP in Google Colab on a GPU, see this notebook.

Installation

conda create --name booknlp python=3.7
conda activate booknlp
  • If using a GPU, install pytorch for your system and CUDA version by following installation instructions on https://pytorch.org.

  • Install booknlp and download Spacy model.

pip install booknlp
python -m spacy download en_core_web_sm

Usage

from booknlp.booknlp import BookNLP

model_params={
		"pipeline":"entity,quote,supersense,event,coref", 
		"model":"big"
	}
	
booknlp=BookNLP("en", model_params)

# Input file to process
input_file="input_dir/bartleby_the_scrivener.txt"

# Output directory to store resulting files in
output_directory="output_dir/bartleby/"

# File within this directory will be named ${book_id}.entities, ${book_id}.tokens, etc.
book_id="bartleby"

booknlp.process(input_file, output_directory, book_id)

This runs the full BookNLP pipeline; you are able to run only some elements of the pipeline (to cut down on computational time) by specifying them in that parameter (e.g., to only run entity tagging and event tagging, change model_params above to include "pipeline":"entity,event").

This process creates the directory output_dir/bartleby and generates the following files:

  • bartleby/bartleby.tokens -- This encodes core word-level information. Each row corresponds to one token and includes the following information:

    • paragraph ID
    • sentence ID
    • token ID within sentence
    • token ID within document
    • word
    • lemma
    • byte onset within original document
    • byte offset within original document
    • POS tag
    • dependency relation
    • token ID within document of syntactic head
    • event
  • bartleby/bartleby.entities -- This represents the typed entities within the document (e.g., people and places), along with their coreference.

    • coreference ID (unique entity ID)
    • start token ID within document
    • end token ID within document
    • NOM (nominal), PROP (proper), or PRON (pronoun)
    • PER (person), LOC (location), FAC (facility), GPE (geo-political entity), VEH (vehicle), ORG (organization)
    • text of entity
  • bartleby/bartleby.supersense -- This stores information from supersense tagging.

    • start token ID within document
    • end token ID within document
    • supersense category (verb.cognition, verb.communication, noun.artifact, etc.)
  • bartleby/bartleby.quotes -- This stores information about the quotations in the document, along with the speaker. In a sentence like "'Yes', she said", where she -> ELIZABETH_BENNETT, "she" is the attributed mention of the quotation 'Yes', and is coreferent with the unique entity ELIZABETH_BENNETT.

    • start token ID within document of quotation
    • end token ID within document of quotation
    • start token ID within document of attributed mention
    • end token ID within document of attributed mention
    • attributed mention text
    • coreference ID (unique entity ID) of attributed mention
    • quotation text
  • bartleby/bartleby.book

JSON file providing information about all characters mentioned more than 1 time in the book, including their proper/common/pronominal references, referential gender, actions for the which they are the agent and patient, objects they possess, and modifiers.

  • bartleby/bartleby.book.html

HTML file containing a.) the full text of the book along with annotations for entities, coreference, and speaker attribution and b.) a list of the named characters and major entity catgories (FAC, GPE, LOC, etc.).

Annotations

Entity annotations

The entity annotation layer covers six of the ACE 2005 categories in text:

  • People (PER): Tom Sawyer, her daughter
  • Facilities (FAC): the house, the kitchen
  • Geo-political entities (GPE): London, the village
  • Locations (LOC): the forest, the river
  • Vehicles (VEH): the ship, the car
  • Organizations (ORG): the army, the Church

The targets of annotation here include both named entities (e.g., Tom Sawyer), common entities (the boy) and pronouns (he). These entities can be nested, as in the following:

drawing

For more, see: David Bamman, Sejal Popat and Sheng Shen, "An Annotated Dataset of Literary Entities," NAACL 2019.

The entity tagging model within BookNLP is trained on an annotated dataset of 968K tokens, including the public domain materials in LitBank and a new dataset of ~500 contemporary books, including bestsellers, Pulitzer Prize winners, works by Black authors, global Anglophone books, and genre fiction (article forthcoming).

Event annotations

The event layer identifies events with asserted realis (depicted as actually taking place, with specific participants at a specific time) -- as opposed to events with other epistemic modalities (hypotheticals, future events, extradiegetic summaries by the narrator).

Text Events Source
My father’s eyes had closed upon the light of this world six months, when mine opened on it. {closed, opened} Dickens, David Copperfield
Call me Ishmael. {} Melville, Moby Dick
His sister was a tall, strong girl, and she walked rapidly and resolutely, as if she knew exactly where she was going and what she was going to do next. {walked} Cather, O Pioneers

For more, see: Matt Sims, Jong Ho Park and David Bamman, "Literary Event Detection," ACL 2019.

The event tagging model is trained on event annotations within LitBank. The small model above makes use of a distillation process, by training on the predictions made by the big model for a collection of contemporary texts.

Supersense tagging

Supersense tagging provides coarse semantic information for a sentence by tagging spans with 41 lexical semantic categories drawn from WordNet, spanning both nouns (including plant, animal, food, feeling, and artifact) and verbs (including cognition, communication, motion, etc.)

Example Source
The [station wagons]artifact [arrived]motion at [noon]time, a long shining [line]group that [coursed]motion through the [west campus]location. Delillo, White Noise

The BookNLP tagger is trained on SemCor.

.

Character name clustering and coreference

The coreference layer covers the six ACE entity categories outlined above (people, facilities, locations, geo-political entities, organizations and vehicles) and is trained on LitBank and PreCo.

Example Source
One may as well begin with [Helen]x's letters to [[her]x sister]y Forster, Howard's End

Accurate coreference at the scale of a book-length document is still an open research problem, and attempting full coreference -- where any named entity (Elizabeth), common entity (her sister, his daughter) and pronoun (she) can corefer -- tends to erroneously conflate multiple distinct entities into one. By default, BookNLP addresses this by first carrying out character name clustering (grouping "Tom", "Tom Sawyer" and "Mr. Sawyer" into a single entity), and then allowing pronouns to corefer with either named entities (Tom) or common entities (the boy), but disallowing common entities from co-referring to named entities. To turn off this mode and carry out full corefernce, add pronominalCorefOnly=False to the model_params parameters dictionary above (but be sure to inspect the output!).

For more on the coreference criteria used in this work, see David Bamman, Olivia Lewke and Anya Mansoor (2020), "An Annotated Dataset of Coreference in English Literature", LREC.

Referential gender inference

BookNLP infers the referential gender of characters by associating them with the pronouns (he/him/his, she/her, they/them, xe/xem/xyr/xir, etc.) used to refer to them in the context of the story. This method encodes several assumptions:

  • BookNLP describes the referential gender of characters, and not their gender identity. Characters are described by the pronouns used to refer to them (e.g., he/him, she/her) rather than labels like "M/F".

  • Prior information on the alignment of names with referential gender (e.g., from government records or larger background datasets) can be used to provide some information to inform this process if desired (e.g., "Tom" is often associated with he/him in pre-1923 English texts). Name information, however, should not be uniquely determinative, but rather should be sensitive to the context in which it is used (e.g., "Tom" in the book "Tom and Some Other Girls", where Tom is aligned with she/her). By default, BookNLP uses prior information on the alignment of proper names and honorifics with pronouns drawn from ~15K works from Project Gutenberg; this prior information can be ignored by setting referential_gender_hyperparameterFile:None in the model_params file. Alternative priors can be used by passing the pathname to a prior file (in the same format as english/data/gutenberg_prop_gender_terms.txt) to this parameter.

  • Users should be free to define the referential gender categories used here. The default set of categories is {he, him, his}, {she, her}, {they, them, their}, {xe, xem, xyr, xir}, and {ze, zem, zir, hir}. To specify a different set of categories, update the model_params setting to define them: referential_gender_cats: [ ["he", "him", "his"], ["she", "her"], ["they", "them", "their"], ["xe", "xem", "xyr", "xir"], ["ze", "zem", "zir", "hir"] ]

Speaker attribution

The speaker attribution model identifies all instances of direct speech in the text and attributes it to its speaker.

Quote Speaker Source
— Come up , Kinch ! Come up , you fearful jesuit ! Buck_Mulligan-0 Joyce, Ulysses
‘ Oh dear ! Oh dear ! I shall be late ! ’ The_White_Rabbit-4 Carroll, Alice in Wonderland
“ Do n't put your feet up there , Huckleberry ; ” Miss_Watson-26 Twain, Huckleberry Finn

This model is trained on speaker attribution data in LitBank. For more on the quotation annotations, see this paper.

Part-of-speech tagging and dependency parsing

BookNLP uses Spacy for part-of-speech tagging and dependency parsing.

Acknowledgments

BookNLP is supported by the National Endowment for the Humanities (HAA-271654-20) and the National Science Foundation (IIS-1942591).
vits chinese, tts chinese, tts mandarin

vits chinese, tts chinese, tts mandarin 史上训练最简单,音质最好的语音合成系统

AmorTX 12 Dec 14, 2022
Chinese NER with albert/electra or other bert descendable model (keras)

Chinese NLP (albert/electra with Keras) Named Entity Recognization Project Structure ./ ├── NER │   ├── __init__.py │   ├── log

2 Nov 20, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Soohwan Kim 40 Sep 19, 2022
ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension

ThinkTwice ThinkTwice is a retriever-reader architecture for solving long-text machine reading comprehension. It is based on the paper: ThinkTwice: A

Walle 4 Aug 06, 2021
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect.

117 Jan 07, 2023
Making text a first-class citizen in TensorFlow.

TensorFlow Text - Text processing in Tensorflow IMPORTANT: When installing TF Text with pip install, please note the version of TensorFlow you are run

1k Dec 26, 2022
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Zakaria 7 Dec 13, 2022
this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

1 Nov 02, 2021
Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

David McClosky 64 May 08, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 68 Jan 06, 2023
Shellcode antivirus evasion framework

Schrodinger's Cat Schrodinger'sCat is a Shellcode antivirus evasion framework Technical principle Please visit my blog https://idiotc4t.com/ How to us

idiotc4t 27 Jul 09, 2022
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
A Practitioner's Guide to Natural Language Processing

Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, Text

Dipanjan (DJ) Sarkar 1.5k Jan 03, 2023
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022