HuggingTweets - Train a model to generate tweets

Overview

HuggingTweets - Train a model to generate tweets

Create in 5 minutes a tweet generator based on your favorite Tweeter

Make my own model with the demo →

or access existing models →

Introduction

I developed HuggingTweets to try to predict Elon Musk's next breakthrough 😉

huggingtweets illustration

This project fine-tunes a pre-trained neural network on a user's tweets using HuggingFace Transformers, an awesome open source library for Natural Language Processing. The resulting model can then generate new tweets for you!

Training and results are automatically logged into W&B through the HuggingFace integration.

Usage

To test the demo, click on below link and share your predictions!

Open In Colab

You can also use it locally by installing the dependencies with pipenv or pip and use huggingtweets-demo.ipynb

Results

My favorite sample is definitely on Andrej Karpathy, start of sentence "I don't like":

I don't like this :) 9:20am: Forget this little low code and preprocessor optimization. Even if it's neat, for top-level projects. 9:27am: Other useful code examples? It's not kind of best code, :) 9:37am: Python drawing bug like crazy, restarts regular web browsing ;) 9:46am: Okay, I don't mind. Maybe I should try that out! I'll investigate it :) 10:00am: I think I should try Shigemitsu's imgur page. Or the minimalist website if you're after 10/10 results :) Also maybe Google ImageNet on "Yelp" instead :) 10:05am: Looking forward to watching it talk!

I had a lot of fun running predictions on other people too!

How does it work?

To understand how the model was developed, check my W&B report.

You can also explore the development version huggingtweets-dev.ipynb or use the following link.

Open In Colab

Required files to run W&B sweeps are in dev folder.

Future research

I still have more research to do:

  • evaluate how to "merge" two different personalities ;
  • test training top layers vs bottom layers to see how it affects learning of lexical field (subject of content) vs word predictions, memorization vs creativity ;
  • augment text data with adversarial approaches ;
  • pre-train on large Twitter dataset of many people ;
  • explore few-shot learning approaches as we have limited data per user though there are probably only few writing styles ;
  • implement a pipeline to continuously train the network on new tweets ;
  • cluster users and identify topics, writing style…

About

Built by Boris Dayma

Follow

My main goals with this project are:

  • to experiment with how to train, deploy and maintain neural networks in production ;
  • to make AI accessible to everyone ;
  • to have fun!

For more details, visit the project repository.

GitHub stars

Disclaimer: this project is not to be used to publish any false generated information but to perform research on Natural Language Generation.

FAQ

  1. Does this project pose a risk of being used for disinformation?

    Large NLP models can be misused to publish false data. OpenAI performed a staged release of GPT-2 to study any potential misuse of their models.

    I want to ensure latest AI technologies are accessible to everyone to ensure fairness and prevent social inequality.

    HuggingTweets shall not be used for creating innapropriate content, nor for any illicit or unethical purposes. Any generated text from other users tweets must explicitly be referenced as such and cannot be published with the intent of hiding their origin. No generated content can be published against a person unwilling to have their data used as such.

  2. Why is the demo in colab instead of being a real independent web app?

    It actually looks much better with Voilà as the code cells are hidden and automatically executed. Also we can easily deploy it through for free on Binder.

    However training such large neural networks requires GPU (not available on Binder, and not cheap) and I wanted to make HuggingTweets accessible to everybody. Google Colab generously offers free GPU so is the perfect place to host the demo.

Resources

Got questions about W&B?

If you have any questions about using W&B to track your model performance and predictions, please reach out to the slack community.

Acknowledgements

I was able to make the first version of this program in just a few days.

It would not have been possible without these people and these open-source tools:

  • W&B for the great tracking & visualization tools for ML experiments ;
  • HuggingFace for providing a great framework for Natural Language Understanding ;
  • Tweepy for providing a great API to interact with Twitter (used in the dev notebook) ;
  • Chris Van Pelt for hacking with me on the demo ;
  • Lavanya Shukla and Carey Phelps for their continuous feedback ;
  • Google Colab for letting people access free GPU!
Owner
Boris Dayma
Sharing AI love ❤
Boris Dayma
Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Hans Alemão 4 Jul 20, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Graphical user interface for Argos Translate

Argos Translate GUI Website | GitHub | PyPI Graphical user interface for Argos Translate. Install pip3 install argostranslategui

Argos Open Tech 16 Dec 07, 2022
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

44 Jan 06, 2023
pyupbit 라이브러리를 활용하여 upbit에서 비트코인을 자동매매하는 코드입니다. 조코딩 유튜브 채널에서 자세한 강의 영상을 보실 수 있습니다.

파이썬 비트코인 투자 자동화 강의 코드 by 유튜브 조코딩 채널 pyupbit 라이브러리를 활용하여 upbit 거래소에서 비트코인 자동매매를 하는 코드입니다. 파일 구성 test.py : 잔고 조회 (1강) backtest.py : 백테스팅 코드 (2강) bestK.p

조코딩 JoCoding 186 Dec 29, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
मराठी भाषा वाचविण्याचा एक प्रयास. इंग्रजी ते मराठीचा शब्दकोश. An attempt to preserve the Marathi language. A lightweight and ad free English to Marathi thesaurus.

For English, scroll down मराठी शब्द मराठी भाषा वाचवण्यासाठी मी हा ओपन सोर्स प्रोजेक्ट सुरू केला आहे. माझ्या मते, आपली भाषा हळूहळू आणि कोणाचाही लक्षात

मुक्त स्त्रोत 20 Oct 11, 2022
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data.

MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data. It is implemented using Python.

willow 6 Jun 27, 2022
Segmenter - Transformer for Semantic Segmentation

Segmenter - Transformer for Semantic Segmentation

592 Dec 27, 2022
Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Snm Logic 1 Dec 20, 2021
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023