TensorLight - A high-level framework for TensorFlow

Overview
TensorLight

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced features that are not yet provided out-of-the-box.

Setup

After cloning the repository, we can install the package locally (for use on our system), with:

$ cd /path/to/tensorlight
$ sudo pip install .

We can also install the package with a symlink, so that changes to the source files will be immediately available to other users of the package on our system:

$ sudo pip install -e .

Guiding Principles

The TensorLight framework is developed under its four core principles:

  • Simplicity: Straight-forward to use for anybody who has already worked with TensorFlow. Especially, no further learning is required regarding how to define a model's graph definition.
  • Compactness: Reduce boilerplate code, while keeping the transparency and flexibility of TensorFlow.
  • Standardization: Provide a standard way in respect to the implementation of models and datasets in order to save time. Further, it automates the whole training and validation process, but also provides hooks to maintain customizability.
  • Superiority: Enable advanced features that are not included in the TensorFlow API, as well as retain its full functionality.

Key Features

To highlight the advanced features of TensorLight, an incomplete list of some main functionalities is provided that are not shipped with TensorFlow by default, or might even be missing in other high-level APIs. These include:

  • Transparent lifecycle management of the session and graph definition.
  • Abstraction of models and datasets to provide a reusable plug-and-play support.
  • Effortless support to train a model symmetrically on multiple GPUs, as well as prevent TensorFlow to allocate memory on other GPU devices of the cluster.
  • Train or evaluate a model with a single line of code.
  • Abstracted, runtime-exchangeable input pipelines which either use the simple feeding mechanism with NumPy arrays, or even multi-threaded input queues.
  • Automatic saving and loading of hyperparameters as JSON to simplify the evaluation management of numerous trainings.
  • Ready-to-use loss functions and metrics, even with latest advances for perceptual motivated image similarity assessment.
  • Extended recurrent functions to enable scheduled sampling, as well as an implementation of a ConvLSTM cell.
  • Automatic creation of periodic checkpoints and TensorBoard summaries.
  • Ability to work with other higher-level libraries hand in hand, such as tf.contrib or TF-slim.

Architecture

From an architectural perspective, the framework can be split into three main components. First, a collection of utility function that are unrelated to machine learning. Examples are functions to download and extract datasets, to process images and videos, or to generate animated GIFs and videos from a data array, to name just a few. Second, the high-level library which builds on top of TensorFlow. It includes several modules that either provide a simple access to functionally that it repeatedly required when developing deep learning applications, or features that are not included in TensorFlow yet. For instance, it handles the creation of weight and bias variables internally, offers a bunch of ready-to-use loss and initialization functions, or comes with some advanced visualization features to display feature maps or output images directly in an IPython Notebook. Third, an abstraction layer to simplify the overall lifecycle, to generalize the definition of a model graphs, as well as to enable a reusable and consistent access to datasets.

TensorLight Architecture

The user program can either exploit the high-level library and the provided utility functions for his existing projects, or take advantage from TensorLight's abstraction layes while creating new deep learning applications. The latter enables to radically reduce the amount of code that has to be written for training or evaluating the model. This is realized by encapsulating the lifecycle of TensorFlow's session, graph, summary-writer or checkpoint-saver, as well as the entire training or evaluation loop within a runtime module.

Examples

You want to learn more? Check out the tutorial and code examples.

Owner
Benjamin Kan
Passionate coder with focus on machine learning, mobile apps and game development
Benjamin Kan
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022