A simple reverse geocoder that resolves a location to a country

Overview

Reverse Geocoder

This repository holds a small web service that performs reverse geocoding to determine whether a user specified location is within the geographic bounds of a country. If it is then the response will contain attributes associated with the matched country such as name, iso label, etc.

I created this simple demonstrator app to learn about FastAPI and PostGIS. It is built using Python and a PostGIS database loaded with country outline polygons obtained from shape files.

API Endpoints

All endpoints are located at /v1/reverse-geocoder/ and are accessible by HTTP.

The OpenAPI specification can be read from /v1/reverse-geocoder/openapi.json.

A SwaggerUI that renders the OpenAPI specification can be found at /v1/reverse-geocoder/docs. The root / will also redirect to the SwaggerUI docs page.

Reverse Geocoder Endpoint

To access the reverse geocoder send a POST to /v1/reverse-geocoder/ with a payload containing the location of interest. See further down for examples using curl.

When the user supplied point is within a country then the response contains attributes of the country that matched. When the user supplied point is not within a country then the response indicates that no country matched.

The response will always contain a copy of the query parameters so that it provides some context for the data. When the location is within a country bounds then the response payload will look like this:

{
  "location":{
    "latitude":-42.239392,
    "longitude":146.558384,
    "altitude":null
  },
  "country":{
    "name":"Australia",
    "iso2":"AU",
    "iso3":"AUS"
  }
}

If the point is not within a country boundary then the response will look like this:

{
  "location":{
    "latitude":-35.031741,
    "longitude":138.119541,
    "altitude":null
  },
  "country":null
}

Demo

To simplify running the reverse geocoding service a Docker compose configuration example is included. However, a few set up steps need to be run first to prepare data that will go into the database - as it is not stored in this repository.

Clone Repo

Start by cloning this repo.

$ git clone https://github.com/claws/reverse-geocoder.git
$ cd reverse-geocoder

Preparation

This demonstration uses world country boundary outlines in shape file format (.shp, .dbf, .shx files) which contain encoded polygons along with other attributes. However, the files are not stored in this repo so they need to be downloaded and then converted into SQL statements.

The following steps show how to download the content from here, decompress it and then convert it into SQL statements that can later be run to insert the contents into the database.

It is important that the name of the generated SQL file is 90-shapes.sql to ensure it gets run after the builtin PostGIS initialization script (which is 10_postgis.sh). This file will be used as a volume mount in the Docker compose configuration.

shp2pgsql is a command line tool that comes with PostGIS. It converts shape files into a SQL format that can be imported into a PostGIS database. The '-G' specifies the use of the geography data type. The '-I' option creates a spatial index after the table is created. This is strongly recommended for improved performance. To run the last command you may need to install PostGIS on your host machine to get the shp2pgsql tool - there may even be a Docker container that has it too.

$ cd database
$ wget http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip
$ unzip TM_WORLD_BORDERS-0.3.zip
$ shp2pgsql -G -I TM_WORLD_BORDERS-0.3.shp countries > 90-shapes.sql
$ cd ..

The shape file produces columns containing the following structures:

COLUMN TYPE DESCRIPTION
fips String(2) FIPS 10-4 Country Code
iso2 String(2) ISO 3166-1 Alpha-2 Country Code
iso3 String(3) ISO 3166-1 Alpha-3 Country Code
un Short Integer(3) ISO 3166-1 Numeric-3 Country Code
name String(50) Name of country/area
area Long Integer(7) Land area, FAO Statistics (2002)
pop2005 Double(10,0) Population, World Population Prospects (2005)
region Short Integer(3) Macro geographical (continental region), UN Statistics
subregion Short Integer(3) Geographical sub-region, UN Statistics
lon FLOAT (7,3) Longitude
lat FLOAT (6,3) Latitude
geog Polygon Country/area border as polygon(s)

Start services

Start the database and web server using Docker compose. As part of the startup steps the database runs initialisation script - which will run SQL file created in the setup steps above.

$ docker-compose up --build

The FastAPI framework is built upon OpenAPI and it supports a builtin viewer for the interface specification. These allow developers to perform manual tests.

Once the services start up you should be able to access the SwaggerUI web user interface here which should redirect you to the docs site.

screenshot

Click the POST /v1/reverse-geocoder/ row to expose details about the endpoint. This endpoint is implemented to accept a payload, rather than URL parameters, as it can then rely on the specification and Pydantic to simplify the interface between the API endpoint and the database layer.

Click the Try it out button. This changes the form to allow user input. Leave the default payload structure then click Execute. The Responses section should get populated with the data returned from the web service - which in this case indicates that the point was in Australia.

Try changing the location to some of those in the table below. The last two should return 'null' for the country as they are located in a sea.

Rough Location Position
Tasmania 146.558384 -42.239392
New Zealand 167.930127 -47.033240
Hawaii -157.935416 21.460822
Iceland -21.478138 64.113670
Cypress 34.321495 35.556301
St Vincent Gulf 138.119541 -35.031741
Black Sea 34.402367 43.400157

The Swagger UI also shows the equivalent curl command to use too.

Check using curl

The Reverse Geocoder Service REST API can be used from curl too.

When the location is within a country bounds then the response payload will contain country attributes.

$ curl -X POST "http://localhost:8000/v1/reverse-geocoder/" \
  -H "accept: application/json" \
  -H "Content-Type: application/json" \
  -d "{\"location\":{\"longitude\":146.558384,\"latitude\":-42.239392}}"
{
  "location":{
    "latitude":-42.239392,
    "longitude":146.558384,
    "altitude":null
  },
  "country":{
    "name":"Australia",
    "iso2":"AU",
    "iso3":"AUS"
  }
}

When the user supplied point is not within a country then the response indicates that no country matched.

$ curl -X POST "http://localhost:8000/v1/reverse-geocoder/" \
  -H "accept: application/json" \
  -H "Content-Type: application/json" \
  -d "{\"location\":{\"longitude\":138.119541,\"latitude\":-35.031741}}"
{
  "location":{
    "latitude":-35.031741,
    "longitude":138.119541,
    "altitude":null
  },
  "country":null
}

Developer Notes

Data Server

It can be useful during development to run the Python web server locally. The instructions below show how to do that.

Create a Python virtual environment.

$ cd web-service
$ python3.8 -m venv venv --prompt fast
$ source venv/bin/activate
(fast) $ pip install pip -U
(fast) $ pip install -r requirements.dev.txt
(fast) $ pip install -r requirements.txt

Apply code style

$ black app

Run the data server. Use --reload to enable automatic reloads on code changes.

(fast) $ uvicorn app.main:app --reload --log-level info
INFO:     Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
INFO:     Started reloader process [2617]
INFO:     Started server process [2619]
INFO:     Waiting for application startup.
INFO:     Connected to database postgresql://postgres:********@localhost:54321/postgres
INFO:     Application startup complete.

Database Inspection

It can be useful to attach to the database directly to test out queries. Use docker-compose to connect to the running database by attaching to the container. Once attached the psql tool can be used to execute a query identical to that done by the web service to check if a point lies within a polygon.

The PostGIS ST_Covers function which returns TRUE if A covers B (i.e. no points of B are outside A).

$ docker-compose run database bash
[email protected]:/$
[email protected]:/$ psql --host database -U postgres postgres
Password for user postgres:
postgres=#
postgres=# SELECT name,fips,iso2,iso3 FROM countries WHERE ST_Covers(countries.geog, ST_GeographyFromText('POINT(146.558384 -42.239392)'));
   name    | fips | iso2 | iso3
-----------+------+------+------
 Australia | AS   | AU   | AUS
(1 row)
postgres=#
postgres=# SELECT name,fips,iso2,iso3 FROM countries WHERE ST_Covers(countries.geog, ST_GeographyFromText('POINT(138.119541 -35.031741)'));
 name | fips | iso2 | iso3
------+------+------+------
(0 rows)
postgres=# \q
[email protected]:/$ exit
Software for Advanced Spatial Econometrics

GeoDaSpace Software for Advanced Spatial Econometrics GeoDaSpace current version 1.0 (32-bit) Development environment: Mac OSX 10.5.x (32-bit) wxPytho

GeoDa Center 38 Jan 03, 2023
A ninja python package that unifies the Google Earth Engine ecosystem.

A Python package that unifies the Google Earth Engine ecosystem. EarthEngine.jl | rgee | rgee+ | eemont GitHub: https://github.com/r-earthengine/ee_ex

47 Dec 27, 2022
How to use COG's (Cloud optimized GeoTIFFs) with Rasterio

How to use COG's (Cloud optimized GeoTIFFs) with Rasterio According to Cogeo.org: A Cloud Opdtimized GeoTIFF (COG) is a regular GeoTIFF file, aimed at

Marvin Gabler 8 Jul 29, 2022
🌐 Local tile server for viewing geospatial raster files with ipyleaflet or folium

🌐 Local Tile Server for Geospatial Rasters Need to visualize a rather large (gigabytes) raster you have locally? This is for you. A Flask application

Bane Sullivan 192 Jan 04, 2023
Open Data Cube analyses continental scale Earth Observation data through time

Open Data Cube Core Overview The Open Data Cube Core provides an integrated gridded data analysis environment for decades of analysis ready earth obse

Open Data Cube 410 Dec 13, 2022
Histogram matching plugin for rasterio

rio-hist Histogram matching plugin for rasterio. Provides a CLI and python module for adjusting colors based on histogram matching in a variety of col

Mapbox 75 Sep 23, 2022
Geographic add-ons for Django REST Framework. Maintained by the OpenWISP Project.

django-rest-framework-gis Geographic add-ons for Django Rest Framework - Mailing List. Install last stable version from pypi pip install djangorestfra

OpenWISP 981 Jan 03, 2023
This is a simple python code to get IP address and its location using python

IP address & Location finder @DEV/ED : Pavan Ananth Sharma Dependencies: ip2geotools Note: use pip install ip2geotools to install this in your termin

Pavan Ananth Sharma 2 Jul 05, 2022
Creates 3D geometries from 2D vector graphics, for use in geodynamic models

geomIO - creating 3D geometries from 2D input This is the Julia and Python version of geomIO, a free open source software to generate 3D volumes and s

3 Feb 01, 2022
ColoringMapAlgorithm-CSP- - Graphical Coloring of Countries with Condition Satisfaction Algorithm

ColoringMapAlgorithm-CSP- Condition Satisfaction Algorithm Output Condition

Kerem TAN 2 Jan 10, 2022
Yet Another Time Series Model

Yet Another Timeseries Model (YATSM) master v0.6.x-maintenance Build Coverage Docs DOI | About Yet Another Timeseries Model (YATSM) is a Python packag

Chris Holden 60 Sep 13, 2022
Solving the Traveling Salesman Problem using Self-Organizing Maps

Solving the Traveling Salesman Problem using Self-Organizing Maps This repository contains an implementation of a Self Organizing Map that can be used

Diego Vicente 3.1k Dec 31, 2022
A proof-of-concept jupyter extension which converts english queries into relevant python code

Text2Code for Jupyter notebook A proof-of-concept jupyter extension which converts english queries into relevant python code. Blog post with more deta

DeepKlarity 2.1k Dec 29, 2022
This program analizes films database with adresses, and creates a folium map with closest films to the coordinates

Films-map-project UCU CS lab 1.2, 1st year This program analizes films database with adresses, and creates a folium map with closest films to the coor

Artem Moskovets 1 Feb 09, 2022
ProjPicker (projection picker) is a Python module that allows the user to select all coordinate reference systems (CRSs)

ProjPicker ProjPicker (projection picker) is a Python module that allows the user to select all coordinate reference systems (CRSs) whose extent compl

Huidae Cho 4 Feb 06, 2022
Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Ayush Mishra 3 May 06, 2022
A GUI widget for Linux to show current time in different timezones.

A GUI widget to show current time in different timezones (under development). To use this widget: Run scripts/startup.py Select a country. A list of t

B.Jothin kumar 11 Nov 10, 2022
Script that allows to download data with satellite's orbit height and create CSV with their change in time.

Satellite orbit height ◾ Requirements Python = 3.8 Packages listen in reuirements.txt (run pip install -r requirements.txt) Account on Space Track ◾

Alicja Musiał 2 Jan 17, 2022
Track International space station with python

NASA-ISS-tracker Track International space station with python Modules import json import turtle import urllib.request import time import webbrowser i

Nikhil Yadav 8 Aug 12, 2021
User friendly Rasterio plugin to read raster datasets.

rio-tiler User friendly Rasterio plugin to read raster datasets. Documentation: https://cogeotiff.github.io/rio-tiler/ Source Code: https://github.com

372 Dec 23, 2022