Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Overview

Physion: Evaluating Physical Prediction from Vision in Humans and Machines

Animation of the 8 scenarios

This repo contains code and data to reproduce the results in our paper, Physion: Evaluating Physical Prediction from Vision in Humans and Machines. Please see below for details about how to download the Physion dataset, replicate our modeling & human experiments, and statistical analyses to reproduce our results.

  1. Downloading the Physion dataset
  2. Dataset generation
  3. Modeling experiments
  4. Human experiments
  5. Comparing models and humans

Downloading the Physion dataset

Downloading the Physion test set (a.k.a. stimuli)

PhysionTest-Core (270 MB)

PhysionTest-Core is all you need to evaluate humans and models on exactly the same test stimuli used in our paper.

It contains eight directories, one for each scenario type (e.g., collide, contain, dominoes, drape, drop, link, roll, support).

Each of these directories contains three subdirectories:

  • maps: Contains PNG segmentation maps for each test stimulus, indicating location of agent object in red and patient object in yellow.
  • mp4s: Contains the MP4 video files presented to human participants. The agent and patient objects appear in random colors.
  • mp4s-redyellow: Contains the MP4 video files passed into models. The agent and patient objects consistently appear in red and yellow, respectively.

Download URL: https://physics-benchmarking-neurips2021-dataset.s3.amazonaws.com/Physion.zip.

PhysionTest-Complete (380 GB)

PhysionTest-Complete is what you want if you need more detailed metadata for each test stimulus.

Each stimulus is encoded in an HDF5 file containing comprehensive information regarding depth, surface normals, optical flow, and segmentation maps associated with each frame of each trial, as well as other information about the physical states of objects at each time step.

Download URL: https://physics-benchmarking-neurips2021-dataset.s3.amazonaws.com/PhysionTestHDF5.tar.gz.

You can also download the testing data for individual scenarios from the table in the next section.

Downloading the Physion training set

Downloading PhysionTrain-Dynamics

PhysionTrain-Dynamics contains the full dataset used to train the dynamics module of models benchmarked in our paper. It consists of approximately 2K stimuli per scenario type.

Download URL (770 MB): https://physics-benchmarking-neurips2021-dataset.s3.amazonaws.com/PhysionTrainMP4s.tar.gz

Downloading PhysionTrain-Readout

PhysionTrain-Readout contains a separate dataset used for training the object-contact prediction (OCP) module for models pretrained on the PhysionTrain-Dynamics dataset. It consists of 1K stimuli per scenario type.

The agent and patient objects in each of these readout stimuli consistently appear in red and yellow, respectively (as in the mp4s-redyellow examples from PhysionTest-Core above).

NB: Code for using these readout sets to benchmark any pretrained model (not just models trained on the Physion training sets) will be released prior to publication.

Download URLs for complete PhysionTrain-Dynamics and PhysionTrain-Readout:

Scenario Dynamics Training Set Readout Training Set Test Set
Dominoes Dominoes_dynamics_training_HDF5s Dominoes_readout_training_HDF5s Dominoes_testing_HDF5s
Support Support_dynamics_training_HDF5s Support_readout_training_HDF5s Support_testing_HDF5s
Collide Collide_dynamics_training_HDF5s Collide_readout_training_HDF5s Collide_testing_HDF5s
Contain Contain_dynamics_training_HDF5s Contain_readout_training_HDF5s Contain_testing_HDF5s
Drop Drop_dynamics_training_HDF5s Drop_readout_training_HDF5s Drop_testing_HDF5s
Roll Roll_dynamics_training_HDF5s Roll_readout_training_HDF5s Roll_testing_HDF5s
Link Link_dynamics_training_HDF5s Link_readout_training_HDF5s Link_testing_HDF5s
Drape Drape_dynamics_training_HDF5s Drape_readout_training_HDF5s Drape_testing_HDF5s

Dataset generation

This repo depends on outputs from tdw_physics.

Specifically, tdw_physics is used to generate the dataset of physical scenarios (a.k.a. stimuli), including both the training datasets used to train physical-prediction models, as well as test datasets used to measure prediction accuracy in both physical-prediction models and human participants.

Instructions for using the ThreeDWorld simulator to regenerate datasets used in our work can be found here. Links for downloading the Physion testing, training, and readout fitting datasets can be found here.

Modeling experiments

The modeling component of this repo depends on the physopt repo. The physopt repo implements an interface through which a wide variety of physics prediction models from the literature (be they neural networks or otherwise) can be adapted to accept the inputs provided by our training and testing datasets and produce outputs for comparison with our human measurements.

The physopt also contains code for model training and evaluation. Specifically, physopt implements three train/test procols:

  • The only protocol, in which each candidate physics model architecture is trained -- using that model's native loss function as specified by the model's authors -- separately on each of the scenarios listed above (e.g. "dominoes", "support", &c). This produces eight separately-trained models per candidate architecture (one for each scenario). Each of these separate models are then tested in comparison to humans on the testing data for that scenario.
  • A all protocol, in which each candidate physics architecture is trained on mixed data from all of the scenarios simultaneously (again, using that model's native loss function). This single model is then tested and compared to humans separately on each scenario.
  • A all-but-one protocol, in which each candidate physics architecture is trained on mixed data drawn for all but one scenario -- separately for all possible choices of the held-out scenario. This produces eight separately-trained models per candidate architecture (one for each held-out scenario). Each of these separate models are then tested in comparison to humans on the testing data for that scenario.

Results from each of the three protocols are separately compared to humans (as described below in the section on comparison of humans to models). All model-human comparisons are carried using a representation-learning paradigm, in which models are trained on their native loss functions (as encoded by the original authors of the model). Trained models are then evaluated on the specific physion red-object-contacts-yellow-zone prediction task. This evaluation is carried by further training a "readout", implemented as a linear logistic regression. Readouts are always trained in a per-scenario fashion.

Currently, physopt implements the following specific physics prediction models:

Model Name Our Code Link Original Paper Description
SVG Denton and Fergus 2018 Image-like latent
OP3 Veerapaneni et. al. 2020
CSWM Kipf et. al. 2020
RPIN Qi et. al. 2021
pVGG-mlp
pVGG-lstm
pDEIT-mlp Touvron et. al. 2020
pDEIT-lstm
GNS Sanchez-Gonzalez et. al. 2020
GNS-R
DPI Li et. al. 2019

Human experiments

This repo contains code to conduct the human behavioral experiments reported in this paper, as well as analyze the resulting data from both human and modeling experiments.

The details of the experimental design and analysis plan are documented in our study preregistration contained within this repository. The format for this preregistration is adapted from the templates provided by the Open Science Framework for our studies, and put under the same type of version control as the rest of the codebase for this project.

Here is what each main directory in this repo contains:

  • experiments: This directory contains code to run the online human behavioral experiments reported in this paper. More detailed documentation of this code can be found in the README file nested within the experiments subdirectory.
  • analysis (aka notebooks): This directory contains our analysis jupyter/Rmd notebooks. This repo assumes you have also imported model evaluation results from physopt.
  • results: This directory contains "intermediate" results of modeling/human experiments. It contains three subdirectories: csv, plots, and summary.
    • /results/csv/ contains csv files containing tidy dataframes with "raw" data.
    • /results/plots/ contains .pdf/.png plots, a selection of which are then polished and formatted for inclusion in the paper using Adobe Illustrator.
    • Important: Before pushing any csv files containing human behavioral data to a public code repository, triple check that this data is properly anonymized. This means no bare AMT Worker ID's or Prolific participant IDs.
  • stimuli: This directory contains any download/preprocessing scripts for data (a.k.a. stimuli) that are the inputs to human behavioral experiments. This repo assumes you have generated stimuli using tdw_physics. This repo uses code in this directory to upload stimuli to AWS S3 and generate metadata to control the timeline of stimulus presentation in the human behavioral experiments.
  • utils: This directory is meant to contain any files containing general helper functions.

Comparing models and humans

The results reported in this paper can be reproduced by running the Jupyter notebooks contained in the analysis directory.

  1. Downloading results. To download the "raw" human and model prediction behavior, please navigate to the analysis directory and execute the following command at the command line: python download_results.py. This script will fetch several CSV files and download them to subdirectories within results/csv. If this does not work, please download this zipped folder (csv) and move it to the results directory: https://physics-benchmarking-neurips2021-dataset.s3.amazonaws.com/model_human_results.zip.
  2. Reproducing analyses. To reproduce the key analyses reported in the paper, please run the following notebooks in this sequence:
    • summarize_human_model_behavior.ipynb: The purpose of this notebook is to:
      • Apply preprocessing to human behavioral data
      • Visualize distribution and compute summary statistics over human physical judgments
      • Visualize distribution and compute summary statistics over model physical judgments
      • Conduct human-model comparisons
      • Output summary CSVs that can be used for further statistical modeling & create publication-quality visualizations
    • inference_human_model_behavior.ipynb: The purpose of this notebook is to:
      • Visualize human and model prediction accuracy (proportion correct)
      • Visualize average-human and model agreement (RMSE)
      • Visualize human-human and model-human agreement (Cohen's kappa)
      • Compare performance between models
    • paper_plots.ipynb: The purpose of this notebook is to create publication-quality figures for inclusion in the paper.
Owner
Cognitive Tools Lab
reverse engineering the human cognitive toolkit
Cognitive Tools Lab
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022