TableBank: A Benchmark Dataset for Table Detection and Recognition

Overview

TableBank

TableBank is a new image-based table detection and recognition dataset built with novel weak supervision from Word and Latex documents on the internet, contains 417K high-quality labeled tables.

News

  • We release an official split for the train/val/test datasets and re-train both of the Table Detection and Table Structure Recognition models using Detectron2 and OpenNMT tools. The benchmark results, the MODEL ZOO, and the download link of TableBank have been updated.
  • A new benchmark dataset DocBank (Paper, Repo) is now available for document layout analysis
  • Our data can only be used for research purpose
  • Our paper has been accepted in LREC 2020

Introduction

To address the need for a standard open domain table benchmark dataset, we propose a novel weak supervision approach to automatically create the TableBank, which is orders of magnitude larger than existing human labeled datasets for table analysis. Distinct from traditional weakly supervised training set, our approach can obtain not only large scale but also high quality training data.

Nowadays, there are a great number of electronic documents on the web such as Microsoft Word (.docx) and Latex (.tex) files. These online documents contain mark-up tags for tables in their source code by nature. Intuitively, we can manipulate these source code by adding bounding box using the mark-up language within each document. For Word documents, the internal Office XML code can be modified where the borderline of each table is identified. For Latex documents, the tex code can be also modified where bounding boxes of tables are recognized. In this way, high-quality labeled data is created for a variety of domains such as business documents, official fillings, research papers etc, which is tremendously beneficial for large-scale table analysis tasks.

The TableBank dataset totally consists of 417,234 high quality labeled tables as well as their original documents in a variety of domains.

Statistics of TableBank

Based on the number of tables

Task Word Latex Word+Latex
Table detection 163,417 253,817 417,234
Table structure recognition 56,866 88,597 145,463

Based on the number of images

Task Word Latex Word+Latex
Table detection 78,399 200,183 278,582
Table structure recognition 56,866 88,597 145,463

Statistics on Train/Val/Test sets of Table Detection

Source Train Val Test
Latex 187199 7265 5719
Word 73383 2735 2281
Total 260582 10000 8000

Statistics on Train/Val/Test sets of Table Structure Recognition

Source Train Val Test
Latex 79486 6075 3036
Word 50977 3925 1964
Total 130463 10000 5000

License

TableBank is released under the Attribution-NonCommercial-NoDerivs License. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.

Task Definition

Table Detection

Table detection aims to locate tables using bounding boxes in a document. Given a document page in the image format, generating several bounding box that represents the location of tables in this page.

Table Structure Recognition

Table structure recognition aims to identify the row and column layout structure for the tables especially in non-digital document formats such as scanned images. Given a table in the image format, generating an HTML tag sequence that represents the arrangement of rows and columns as well as the type of table cells.

Baselines

To verify the effectiveness of Table-Bank, we build several strong baselines using the state-of-the-art models with end-to-end deep neural networks. The table detection model is based on the Faster R-CNN [Ren et al., 2015] architecture with different settings. The table structure recognition model is based on the encoder-decoder framework for image-to-text.

Data and Metrics

To evaluate table detection, we sample 18,000 document images from Word and Latex documents, where 10,000 images for validation and 8,000 images for testing. Each sampled image contains at least one table. Meanwhile, we also evaluate our model on the ICDAR 2013 dataset to verify the effectiveness of TableBank. To evaluate table structure recognition, we sample 15,000 table images from Word and Latex documents, where 10,000 images for validation and 5,000 images for testing. For table detection, we calculate the precision, recall and F1 in the way described in our paper, where the metrics for all documents are computed by summing up the area of overlap, prediction and ground truth. For table structure recognition, we use the 4-gram BLEU score as the evaluation metric with a single reference.

Table Detection

We use the open-source framework Detectron2 [Wu et al., 2019] to train models on the TableBank. Detectron2 is a high-quality and high-performance codebase for object detection research, which supports many state-of-the-art algorithms. In this task, we use the Faster R-CNN algorithm with the ResNeXt [Xie et al., 2016] as the backbone network architecture, where the parameters are pre-trained on the ImageNet dataset. All baselines are trained using 4 V100 NVIDIA GPUs using data-parallel sync SGD with a minibatch size of 20 images. For other parameters, we use the default values in Detectron2. During testing, the confidence threshold of generating bounding boxes is set to 90%.

Models Word Latex Word+Latex
Precision Recall F1 Precision Recall F1 Precision Recall F1
X101(Word) 0.9352 0.9398 0.9375 0.9905 0.5851 0.7356 0.9579 0.7474 0.8397
X152(Word) 0.9418 0.9415 0.9416 0.9912 0.6882 0.8124 0.9641 0.8041 0.8769
X101(Latex) 0.8453 0.9335 0.8872 0.9819 0.9799 0.9809 0.9159 0.9587 0.9368
X152(Latex) 0.8476 0.9264 0.8853 0.9816 0.9814 0.9815 0.9173 0.9562 0.9364
X101(Word+Latex) 0.9178 0.9363 0.9270 0.9827 0.9784 0.9806 0.9526 0.9592 0.9559
X152(Word+Latex) 0.9229 0.9266 0.9247 0.9837 0.9752 0.9795 0.9557 0.9530 0.9543

Table Structure Recognition

For table structure recognition, we use the open-source framework OpenNMT [Klein et al., 2017] to train the image-to-text model. OpenNMT is mainly designed for neural machine translation, which supports many encoder-decoder frameworks. In this task, we train our model using the image-to-text method in OpenNMT. The model is also trained using 4 V100 NVIDIA GPUs with the learning rate of 1 and batch size of 24. For other parameters, we use the default values in OpenNMT.

Models Word Latex Word+Latex
Image-to-Text (Word) 59.18 69.76 65.75
Image-to-Text (Latex) 51.45 71.63 63.08
Image-to-Text (Word+Latex) 69.93 77.94 74.54

Model Zoo

The trained models are available for download in the TableBank Model Zoo.

Get Data and Leaderboard

**Please DO NOT re-distribute our data.**

If you use the corpus in published work, please cite it referring to the "Paper and Citation" Section.

The annotations and original document pictures of the TableBank dataset can be download from the TableBank dataset homepage.

Paper and Citation

https://arxiv.org/abs/1903.01949

@misc{li2019tablebank,
    title={TableBank: A Benchmark Dataset for Table Detection and Recognition},
    author={Minghao Li and Lei Cui and Shaohan Huang and Furu Wei and Ming Zhou and Zhoujun Li},
    year={2019},
    eprint={1903.01949},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

References

  • [Ren et al., 2015] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time object detection with region proposal networks. CoRR, abs/1506.01497, 2015.
  • [Gilani et al., 2017] A. Gilani, S. R. Qasim, I. Malik, and F. Shafait. Table detection using deep learning. In Proc. of ICDAR 2017, volume 01, pages 771–776, Nov 2017.
  • [Wu et al., 2019] Y Wu, A Kirillov, F Massa, WY Lo, R Girshick. Detectron2[J]. 2019.
  • [Xie et al., 2016] Saining Xie, Ross B. Girshick, Piotr Doll´ar, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural networks. CoRR, abs/1611.05431, 2016.
  • [Klein et al., 2017] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M. Rush. Open-NMT: Open-source toolkit for neural machine translation. In Proc. of ACL, 2017.]
SemTorch

SemTorch This repository contains different deep learning architectures definitions that can be applied to image segmentation. All the architectures a

David Lacalle Castillo 154 Dec 07, 2022
BoxToolBox is a simple python application built around the openCV library

BoxToolBox is a simple python application built around the openCV library. It is not a full featured application to guide you through the w

František Horínek 1 Nov 12, 2021
Msos searcher - A half-hearted attempt at finding a magic square of squares

MSOS searcher A half-hearted attempt at finding (or rather searching) a MSOS (Magic Square of Squares) in the spirit of the Parker Square. Running I r

Niels Mündler 1 Jan 02, 2022
Using Opencv ,based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching

Using Opencv ,this project is based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching ,it will just mask that image . This project ,if used in cctv

1 Feb 13, 2022
Introduction to image processing, most used and popular functions of OpenCV

👀 OpenCV 101 Introduction to image processing, most used and popular functions of OpenCV go here.

Vusal Ismayilov 3 Jul 02, 2022
The Open Source Framework for Machine Vision

SimpleCV Quick Links: About Installation [Docker] (#docker) Ubuntu Virtual Environment Arch Linux Fedora MacOS Windows Raspberry Pi SimpleCV Shell Vid

Sight Machine 2.6k Dec 31, 2022
A small C++ implementation of LSTM networks, focused on OCR.

clstm CLSTM is an implementation of the LSTM recurrent neural network model in C++, using the Eigen library for numerical computations. Status and sco

Tom 794 Dec 30, 2022
Primary QPDF source code and documentation

QPDF QPDF is a command-line tool and C++ library that performs content-preserving transformations on PDF files. It supports linearization, encryption,

QPDF 2.2k Jan 04, 2023
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023
Neural search engine for AI papers

Papers search Neural search engine for ML papers. Demo Usage is simple: input an abstract, get the matching papers. The following demo also showcases

Giancarlo Fissore 44 Dec 24, 2022
An application of high resolution GANs to dewarp images of perturbed documents

Docuwarp This project is focused on dewarping document images through the usage of pix2pixHD, a GAN that is useful for general image to image translat

Thomas Huang 97 Dec 25, 2022
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022
Visual Attention based OCR

Attention-OCR Authours: Qi Guo and Yuntian Deng Visual Attention based OCR. The model first runs a sliding CNN on the image (images are resized to hei

Yuntian Deng 1.1k Jan 02, 2023
nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex.

faceprocessor nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex. Tech faceprocessor uses a number of open source projec

NoFaceDB 3 Sep 06, 2021
Kornia is a open source differentiable computer vision library for PyTorch.

Open Source Differentiable Computer Vision Library

kornia 7.6k Jan 06, 2023
This is a real life mario project using python and mediapipe

real-life-mario This is a real life mario project using python and mediapipe How to run to run this just run - realMario.py file requirements This req

Programminghut 42 Dec 22, 2022
~1000 book pages + OpenCV + python = page regions identified as paragraphs, lines, images, captions, etc.

cosc428-structor I had an open-ended Computer Vision assignment to complete, and an out-of-copyright book that I wanted to turn into an ebook. Convent

Chad Oliver 45 Dec 06, 2022
Go package for OCR (Optical Character Recognition), by using Tesseract C++ library

gosseract OCR Golang OCR package, by using Tesseract C++ library. OCR Server Do you just want OCR server, or see the working example of this package?

Hiromu OCHIAI 1.9k Dec 28, 2022
Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

Christian Bartz 496 Jan 05, 2023
Convert PDF/Image to TXT using EasyOcr - the best OCR engine available!

PDFImage2TXT - DOWNLOAD INSTALLER HERE What can you do with it? Convert scanned PDFs to TXT. Convert scanned Documents to TXT. No coding required!! In

Hans Alemão 2 Feb 22, 2022