Dope Wars game engine on StarkNet L2 roll-up

Related tags

Text Data & NLPRYO
Overview

RYO

Dope Wars game engine on StarkNet L2 roll-up.

What

TI-83 drug wars built as smart contract system.

Background mechanism design notion here.

Initial exploration / walkthrough viability testing blog here.

Join in and learn about:

- Cairo. A turing-complete language for programs that become proofs.
- StarkNet. An Ethereum L2 rollup with:
    - L1 for data availability
    - State transitions executed by validity proofs that the EVM checks.

Setup

Clone this repo and use our docker shell to interact with starknet:

git clone [email protected]:dopedao/RYO.git
cd RYO
bin/shell starknet --version

The CLI allows you to deploy to StarkNet and read/write to contracts already deployed. The CLI communicates with a server that StarkNet runs, which bundles the requests, executes the program (contracts are Cairo programs), creates and aggregates validity proofs, then posts them to the Goerli Ethereum testnet. Learn more in the Cairo language and StarkNet docs here, which also has instructions for manual installation if you are not using docker.

If using VS-code for writing code, install the extension for syntax highlighting:

curl -LO https://github.com/starkware-libs/cairo-lang/releases/download/v0.4.0/cairo-0.4.0.vsix
code --install-extension cairo-0.4.0.vsix
code .

Dev

Flow:

  1. Compile the contract with the CLI
  2. Test using pytest
  3. Deploy with CLI
  4. Interact using the CLI or the explorer

File name prefixes are paired (e.g., contract, ABI and test all share comon prefix).

Compile

The compiler will check the integrity of the code locally. It will also produce an ABI, which is a mapping of the contract functions (used to interact with the contract).

bin/shell starknet-compile contracts/GameEngineV1.cairo \
    --output contracts/GameEngineV1_compiled.json \
    --abi abi/GameEngineV1_contract_abi.json

bin/shell starknet-compile contracts/MarketMaker.cairo \
    --output contracts/MarketMaker_compiled.json \
    --abi abi/MarketMaker_contract_abi.json

Test

bin/shell pytest testing/GameEngineV1_contract_test.py

bin/shell pytest testing/MarketMaker_contract_test.py

Deploy

bin/shell starknet deploy --contract contracts/GameEngineV1_compiled.json \
    --network=alpha

bin/shell starknet deploy --contract contracts/MarketMaker_compiled.json \
    --network=alpha

Upon deployment, the CLI will return an address, which can be used to interact with.

Check deployment status by passing in the transaction ID you receive:

bin/shell starknet tx_status --network=alpha --id=176230

PENDING Means that the transaction passed the validation and is waiting to be sent on-chain.

{
    "block_id": 18880,
    "tx_status": "PENDING"
}

Interact

CLI - Write (initialise markets). Set up item_id=5 across all 40 locations. Each pair has 10x more money than item quantity. All items have the same curve

bin/shell starknet invoke \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function admin_set_pairs_for_item \
    --inputs 5 \
        40 \
        20 40 60 80 100 120 140 160 180 200 \
        220 240 260 280 300 320 340 360 380 400 \
        420 440 460 480 500 520 540 560 580 600 \
        620 640 660 680 700 720 740 760 780 800 \
        40 \
        200 400 600 800 1000 1200 1400 1600 1800 2000 \
        2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 \
        4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 \
        6200 6400 6600 6800 7000 7200 7400 7600 7800 8000

Change 5 to another item_id in the range 1-10 to populate other curves.

CLI - Write (initialize user). Set up user_id=733 to have 2000 of item 5.

bin/shell starknet invoke \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function admin_set_user_amount \
    --inputs 733 5 2000

CLI - Read (user state)

bin/shell starknet call \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function check_user_state \
    --inputs 733

CLI - Write (Have a turn). User 733 goes to location 34 to sell (sell is 1, buy is 0) item 5, giving 100 units.

bin/shell starknet invoke \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function have_turn \
    --inputs 733 34 1 5 100

Calling the check_user_state() function again reveals that the 100 units were exchanged for some quantity of money.

Alternatively, see and do all of the above with the Voyager browser here.

Game flow

admin ->
        initialise state variables
        lock admin power
user_1 ->
        have_turn(got_to_loc, trade_x_for_y)
            check if game finished.
            check user authentification.
            check if user allowed using game clock.
            add to random seed.
            user location update.
                decrease money count if new city.
            check for dealer dash (x %).
                check for chase dealer (x %).
                    item lost, no money gained.
            trade with market curve for location.
                decrease money/item, increase the other.
            check for any of:
                mugging (x %).
                    check for run (x %).
                        lose a percentage of money.
                gang war (x %).
                    check for fight (x %).
                        lose a percentage of money.
                cop raid (x %).
                    check for bribe (x %).
                        lose percentage of money & items held.
                find item (x %).
                    increase item balance.
                local shipment (x %).
                    increase item counts in suburb curves.
                warehouse seizure (x %).
                    decrease item counts in suburb curves.
            save next allowed turn as game_clock + n.
user2 -> (same as user_1)

Next steps

Building out parts to make a functional v1. Some good entry-level options for anyone wanting to try out Cairo.

  • Initialised multiple player states.
  • Turn rate limiting. Game has global clock that increments every time a turn occurs. User has a lockout of x clock ticks.
  • Game end criterion based on global clock.
  • Finish mappings/locations.json. Name places and implement different cost to travel for some locations.
    • Locations will e.g., be 10 cities [0, 9] each with 4 suburbs [0, 4].
    • E.g., locations 0, 11, 21, 31 are city 1. Locations 2, 12, 22, 32 are city 2. So location_id=27 is city 7, suburb 2. Free to travel to other suburbs in same city (7, 17, 37).
    • Need to create a file with nice city/subrub names for these in
  • Finish mappings/items.json. Populate and tweak the item names and item unit price. E.g., cocaine price per unit different from weed price per unit.
  • Finish mappings/initial_markets.csv. Create lists of market pair values to initialize the game with. E.g., for all 40 locations x 10 items = 400 money_count-item_count pairs as a separate file. A mapping of 600 units with 6000 money initialises a dealer in that location with 60 of the item at (6000/60) 100 money per item. This mapping should be in the ballpark of the value in items.json. The fact that values deviate, creates trade opportunities at the start of the game. (e.g., a location might have large quantity at lower price).
  • Refine both the likelihood (basis points per user turn) and impact (percentage change) that events have and treak the constanst at the top of contracts/GameEngineV1.cairo. E.g., how often should you get mugged, how much money would you lose.
  • Initialize users with money upon first turn. (e.g., On first turn triggers save of starting amount e.g., 10,000, then sets the flag to )
  • Create caps on maximum parameters (40 location_ids, 10k user_ids, 10 item_ids)
  • User authentication. E.g., signature verification.
  • Add health clock. E.g., some events lower health

Welcome:

  • PRs
  • Issues
  • Questions about Cairo
  • Ideas for the game
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022
189 Jan 02, 2023
TruthfulQA: Measuring How Models Imitate Human Falsehoods

TruthfulQA: Measuring How Models Imitate Human Falsehoods

69 Dec 25, 2022
Shared, streaming Python dict

UltraDict Sychronized, streaming Python dictionary that uses shared memory as a backend Warning: This is an early hack. There are only few unit tests

Ronny Rentner 192 Dec 23, 2022
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
Fine-tune GPT-3 with a Google Chat conversation history

Google Chat GPT-3 This repo will help you fine-tune GPT-3 with a Google Chat conversation history. The trained model will be able to converse as one o

Nate Baer 7 Dec 10, 2022
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
【原神】自动演奏风物之诗琴的程序

疯物之诗琴 读取midi并自动演奏原神风物之诗琴。 可以自定义配置文件自动调整音符来适配风物之诗琴。 (原神1.4直播那天就开始做了!到现在才能放出来。。) 如何使用 在Release页面中下载打包好的程序和midi压缩包并解压。 双击运行“疯物之诗琴.exe”。 在原神中打开风物之诗琴,软件内输入

435 Jan 04, 2023
🎐 a python library for doing approximate and phonetic matching of strings.

jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk James Turk 1.8k Dec 21, 2022

Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
Unlimited Call - Text Bombing Tool

FastBomber Unlimited Call - Text Bombing Tool Installation On Termux

Aryan 6 Nov 10, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
A natural language processing model for sequential sentence classification in medical abstracts.

NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial) A natural language processing model for sequential sentence classification in

Hemanth Chandran 1 Jan 17, 2022
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023
VMD Audio/Text control with natural language

This repository is a proof of principle for performing Molecular Dynamics analysis, in this case with the program VMD, via natural language commands.

Andrew White 13 Jun 09, 2022
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
Need: Image Search With Python

Need: Image Search The problem is that a user needs to search for a specific ima

Surya Komandooru 1 Dec 30, 2021
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables

Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in

1 Jan 29, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022