Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Overview

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation

This is a pytorch project for the paper Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation by Xiaogang Xu, Hengshuang Zhao and Jiaya Jia presented at ICCV2021.

paper link, arxiv

Introduction

Adversarial training is promising for improving the robustness of deep neural networks towards adversarial perturbations, especially on the classification task. The effect of this type of training on semantic segmentation, contrarily, just commences. We make the initial attempt to explore the defense strategy on semantic segmentation by formulating a general adversarial training procedure that can perform decently on both adversarial and clean samples. We propose a dynamic divide-and-conquer adversarial training (DDC-AT) strategy to enhance the defense effect, by setting additional branches in the target model during training, and dealing with pixels with diverse properties towards adversarial perturbation. Our dynamical division mechanism divides pixels into multiple branches automatically. Note all these additional branches can be abandoned during inference and thus leave no extra parameter and computation cost. Extensive experiments with various segmentation models are conducted on PASCAL VOC 2012 and Cityscapes datasets, in which DDC-AT yields satisfying performance under both white- and black-box attacks.

Project Setup

For multiprocessing training, we use apex, tested with pytorch 1.0.1.

First install Python 3. We advise you to install Python 3 and PyTorch with Anaconda:

conda create --name py36 python=3.6
source activate py36

Clone the repo and install the complementary requirements:

cd $HOME
git clone --recursive [email protected]:dvlab-research/Robust_Semantic_Segmentation.git
cd Robust_Semantic_Segmentation
pip install -r requirements.txt

The environment of our experiments is CUDA10.2 and TITAN V. And you should install apex for training.

Requirement

  • Hardware: 4-8 GPUs (better with >=11G GPU memory)

Train

  • Download related datasets and you should modify the relevant paths specified in folder "config"
  • Download ImageNet pre-trained models and put them under folder initmodel for weight initialization.

Cityscapes

  • Train the baseline model with no defense on Cityscapes with PSPNet
    sh tool_train/cityscapes/psp_train.sh
    
  • Train the baseline model with no defense on Cityscapes with DeepLabv3
    sh tool_train/cityscapes/aspp_train.sh
    
  • Train the model with SAT on Cityscapes with PSPNet
    sh tool_train/cityscapes/psp_train_sat.sh
    
  • Train the model with SAT on Cityscapes with DeepLabv3
    sh tool_train/cityscapes/aspp_train_sat.sh
    
  • Train the model with DDCAT on Cityscapes with PSPNet
    sh tool_train/cityscapes/psp_train_ddcat.sh
    
  • Train the model with DDCAT on Cityscapes with DeepLabv3
    sh tool_train/cityscapes/aspp_train_ddcat.sh
    

VOC2012

  • Train the baseline model with no defense on VOC2012 with PSPNet
    sh tool_train/voc2012/psp_train.sh
    
  • Train the baseline model with no defense on VOC2012 with DeepLabv3
    sh tool_train/voc2012/aspp_train.sh
    
  • Train the model with SAT on VOC2012 with PSPNet
    sh tool_train/voc2012/psp_train_sat.sh
    
  • Train the model with SAT on VOC2012 with DeepLabv3
    sh tool_train/voc2012/aspp_train_sat.sh
    
  • Train the model with DDCAT on VOC2012 with PSPNet
    sh tool_train/voc2012/psp_train_ddcat.sh
    
  • Train the model with DDCAT on VOC2012 with DeepLabv3
    sh tool_train/voc2012/aspp_train_ddcat.sh
    

You can use the tensorboardX to visualize the training loss, by

tensorboard --logdir=exp/path_to_log

Test

We provide the script for evaluation, reporting the miou on both clean and adversarial samples (the adversarial samples are obtained with attack whose n=2, epsilon=0.03 x 255, alpha=0.01 x 255)

Cityscapes

  • Evaluate the PSPNet trained with no defense on Cityscapes
    sh tool_test/cityscapes/psp_test.sh
    
  • Evaluate the PSPNet trained with SAT on Cityscapes
    sh tool_test/cityscapes/psp_test_sat.sh
    
  • Evaluate the PSPNet trained with DDCAT on Cityscapes
    sh tool_test/cityscapes/psp_test_ddcat.sh
    
  • Evaluate the DeepLabv3 trained with no defense on Cityscapes
    sh tool_test/cityscapes/aspp_test.sh
    
  • Evaluate the DeepLabv3 trained with SAT on Cityscapes
    sh tool_test/cityscapes/aspp_test_sat.sh
    
  • Evaluate the DeepLabv3 trained with DDCAT on Cityscapes
    sh tool_test/cityscapes/aspp_test_ddcat.sh
    

VOC2012

  • Evaluate the PSPNet trained with no defense on VOC2012
    sh tool_test/voc2012/psp_test.sh
    
  • Evaluate the PSPNet trained with SAT on VOC2012
    sh tool_test/voc2012/psp_test_sat.sh
    
  • Evaluate the PSPNet trained with DDCAT on VOC2012
    sh tool_test/voc2012/psp_test_ddcat.sh
    
  • Evaluate the DeepLabv3 trained with no defense on VOC2012
    sh tool_test/voc2012/aspp_test.sh
    
  • Evaluate the DeepLabv3 trained with SAT on VOC2012
    sh tool_test/voc2012/aspp_test_sat.sh
    
  • Evaluate the DeepLabv3 trained with DDCAT on VOC2012
    sh tool_test/voc2012/aspp_test_ddcat.sh
    

Pretrained Model

You can download the pretrained models from https://drive.google.com/file/d/120xLY_pGZlm3tqaLxTLVp99e06muBjJC/view?usp=sharing

Cityscapes with PSPNet

The model trained with no defense: pretrain/cityscapes/pspnet/no_defense
The model trained with SAT: pretrain/cityscapes/pspnet/sat
The model trained with DDCAT: pretrain/cityscapes/pspnet/ddcat

Cityscapes with DeepLabv3

The model trained with no defense: pretrain/cityscapes/deeplabv3/no_defense
The model trained with SAT: pretrain/cityscapes/deeplabv3/sat
The model trained with DDCAT: pretrain/cityscapes/deeplabv3/ddcat

VOC2012 with PSPNet

The model trained with no defense: pretrain/voc2012/pspnet/no_defense
The model trained with SAT: pretrain/voc2012/pspnet/sat
The model trained with DDCAT: pretrain/voc2012/pspnet/ddcat

VOC2012 with DeepLabv3

The model trained with no defense: pretrain/voc2012/deeplabv3/no_defense
The model trained with SAT: pretrain/voc2012/deeplabv3/sat
The model trained with DDCAT: pretrain/voc2012/deeplabv3/ddcat

Citation Information

If you find the project useful, please cite:

@inproceedings{xu2021ddcat,
  title={Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation},
  author={Xiaogang Xu, Hengshuang Zhao and Jiaya Jia},
  booktitle={ICCV},
  year={2021}
}

Acknowledgments

This source code is inspired by semseg.

Contributions

If you have any questions/comments/bug reports, feel free to e-mail the author Xiaogang Xu ([email protected]).

Owner
DV Lab
Deep Vision Lab
DV Lab
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022