Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

Overview

tisane

Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships

TL;DR: Analysts can use Tisane to author generalized linear models with or without mixed effects. Tisane infers statistical models from variable relationships (from domain knowledge) that analysts specify. By doing so, Tisane helps analysts avoid common threats to external and statistical conclusion validity. Analysts do not need to be statistical experts!

Jump to see a tutorial here or see some examples here. Below, we provide an overview of the API and language primitives.


Tisane provides (i) a graph specification language for expressing relationships between variables and (ii) an interactive query and compilation process for inferring a valid statistical model from a set of variables in the graph.

Graph specification language

Variables

There are three types of variables: (i) Units, (ii) Measures, and (iii) SetUp, or environmental, variables.

  • Unit types represent entities that are observed (observed units in the experimental design literature) or the recipients of experimental conditions (experimental units).
# There are 386 adults participating in a study on weight loss.
adult = ts.Unit("member", cardinality=386)
  • Measure types represent attributes of units that are proxies of underlying constructs. Measures can have one of the following data types: numeric, nominal, or ordinal. Numeric measures have values that lie on an interval or ratio scale. Nominal measures are categorical variables without an ordering between categories. Ordinal measures are categorical variables with an ordering between categories.
# Adults have motivation levels.
motivation_level = adult.ordinal("motivation", order=[1, 2, 3, 4, 5, 6])
# Adults have pounds lost. 
pounds_lost = adult.numeric("pounds_lost")
# Adults have one of four racial identities in this study. 
race = adult.nominal("race group", cardinality=4)
  • SetUp types represent study or experimental settings that are global and unrelated to any of the units involved. For example, time is often an environmental variable that differentiates repeated measures but is neither a unit nor a measure.
# Researchers collected 12 weeks of data in this study. 
week = ts.SetUp("Week", order=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

Design rationale: We derived this type system from how other software tools focused on study design separate their concerns.

Relationships between variables

Analysts can use Tisane to express (i) conceptual and (ii) data measurement relationships between variables.

There are three different types of conceptual relationships.

  • A variable can cause another variable. (e.g., motivation_level.causes(pounds_lost))
  • A variable can be associated with another variable. (e.g., race.associates_with(pounds_lost))
  • One or more variables can moderate the effect of a variable on another variable. (e.g., age.moderates(moderator=[motivation_level], on=pounds_lost)) Currently, a variable, V1, can have a moderated relationship with a variable, V2, without also having a causal or associative relationship with V2.

These relationships are used to construct an internal graph representation of variables and their relationships with one another.

Internally, Tisane constructs a graph representing these relationships. Graph representation is useufl for inferring statistical models (next section).

For example, the below graph represents the above relationships. Rectangular nodes are units. Elliptical nodes are measures and set-up variables. The colored node is the dependent variable in the query.The dotted edges connect units to their measures. The solid edges represent conceptual relationships, as labeled. A graph representation created using DOT

A graph representation created using TikZ

Interactive query and compilation

Analysts query the relationships they have specified (technically, the internal graph represenation) for a statistical model. For each query, analysts must specify (i) a dependent variable to explain using (ii) a set of independent variables.

design = ts.Design(dv=pounds_lost, ivs=[treatment_approach, motivation_level]).assign_data(df)
ts.infer_statistical_model_from_design(design=design)

Query validation: To be a valid query, Tisane verifies that the dependent variable does not cause an independent variable. It would be conceptually incorrect to explain a cause from an effect.

Interaction model

A key aspect of Tisane that distinguishes it from other systems, such as Tea, is the importance of user interaction in guiding the statistical model that is inferred as output and ultimately fit.

Tisane generates a space of candidate statistical models and asks analysts disambiguation questions for (i) including additional main or interaction effects and, if applicable, correlating (or uncorrelating) random slopes and random intercepts as well as (ii) selecting among viable family/link function pairs.

To help analysts, Tisane provides text explanations and visualizations. For example, to show possible family functions, Tisane simulates data to fit a family function and visualizes it on top of a histogram of the analyst's data and explains to the how to use the visualization to compare family functions.

Statistical model inference

After validating a query, Tisane traverses the internal graph representation in order to generate candidate generalized linear models with or without mixed effects. A generalized linear model consists of a model effects structure and a family/link function pair.

Query

Analysts query the relationships they have specified (technically, the internal graph represenation) for a statistical model. For each query, analysts must specify (i) a dependent variable to explain using (ii) a set of independent variables.

Query validation: To be a valid query, Tisane verifies that the dependent variable does not cause an independent variable. It would be conceptually incorrect to explain a cause from an effect.

Statistical model inference

After validating a query, Tisane traverses the internal graph representation in order to generate candidate generalized linear models with or without mixed effects. A generalized linear model consists of a model effects structure and a family/link function pair.

Model effects structure

Tisane generates candidate main effects, interaction effects, and, if applicable, random effects based on analysts' expressed relationships.

  • Tisane aims to direct analysts' attention to variables, especially possible confounders, that the analyst may have overlooked. When generating main effects candidates, Tisane looks for other variables in the graph that may exert causal influence on the dependent variable and are related to the input independent variables.
  • Tisane aims to represent conceptual relationships between variables accurately. Based on the main effects analysts choose to include in their output statistical model, Tisane suggests interaction effects to include. Tisane relies on the moderate relationships analysts specified in their input program to infer interaction effects.
  • Tisane aims to increase the generalizability of statistical analyses and results by automatically detecting the need for and including random effects. Tisane follows the guidelines outlined in [] and [] to generat the maximal random effects structure.

INFERENCE.md explains all inference rules in greater detail.

Family/link function

Family and link functions depend on the data types of dependent variables and their distributions.

Based on the data type of the dependent variable, Tisane suggests matched pairs of possible family and link functions to consider. Tisane ensures that analysts consider only valid pairs of family and link functions.


Limitations

  • Tisane is designed for researchers or analysts who are domain experts and can accurately express their domain knowledge and data measurement/collection details using the Tisane graph specification language. We performed an initial evaluation of the expressive coverage of Tisane's language and found that it is useful for expressing a breadth of study designs common in HCI.

Benefits

Tisane helps analysts avoid common threats to statistical conclusion and external validity.

Specifically, Tisane helps analysts

  • avoid violations of GLM assumptions by inferring random effects and plausible family and link functions
  • fishing and false discovery due to conceptually incomplete statistical models
  • interaction of the causal relationships with units, interaction of the causal realtionships with settings due to not controlling for the appropriate clusters/non-independence of observations as random effects

These are four of the 37 threats to validity Shadish, Cook, and Campbell outline across internal, external, statistical conclusion, and construct validity [1].


Examples

Check out examples here!

References

[1] Cook, T. D., Campbell, D. T., & Shadish, W. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston, MA: Houghton Mifflin.

Owner
Eunice Jun
PhD student in computer science at University of Washington. Human-computer interaction, statistical analysis, programming languages, all things data.
Eunice Jun
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023