Minimal PyTorch implementation of YOLOv3

Overview

PyTorch-YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Ubuntu CI PyPI pyversions PyPI license

Installation

Installing from source

For normal training and evaluation we recommend installing the package from source using a poetry virtual enviroment.

git clone https://github.com/eriklindernoren/PyTorch-YOLOv3
cd PyTorch-YOLOv3/
pip3 install poetry --user
poetry install

You need to join the virtual enviroment by runing poetry shell in this directory before running any of the following commands without the poetry run prefix. Also have a look at the other installing method, if you want to use the commands everywhere without opening a poetry-shell.

Download pretrained weights

./weights/download_weights.sh

Download COCO

./data/get_coco_dataset.sh

Install via pip

This installation method is recommended, if you want to use this package as a dependency in another python project. This method only includes the code, is less isolated and may conflict with other packages. Weights and the COCO dataset need to be downloaded as stated above. See API for further information regarding the packages API. It also enables the CLI tools yolo-detect, yolo-train, and yolo-test everywhere without any additional commands.

pip3 install pytorchyolo --user

Test

Evaluates the model on COCO test dataset. To download this dataset as well as weights, see above.

poetry run yolo-test --weights weights/yolov3.weights
Model mAP (min. 50 IoU)
YOLOv3 608 (paper) 57.9
YOLOv3 608 (this impl.) 57.3
YOLOv3 416 (paper) 55.3
YOLOv3 416 (this impl.) 55.5

Inference

Uses pretrained weights to make predictions on images. Below table displays the inference times when using as inputs images scaled to 256x256. The ResNet backbone measurements are taken from the YOLOv3 paper. The Darknet-53 measurement marked shows the inference time of this implementation on my 1080ti card.

Backbone GPU FPS
ResNet-101 Titan X 53
ResNet-152 Titan X 37
Darknet-53 (paper) Titan X 76
Darknet-53 (this impl.) 1080ti 74
poetry run yolo-detect --images data/samples/

Train

For argument descriptions have a lock at poetry run yolo-train --help

Example (COCO)

To train on COCO using a Darknet-53 backend pretrained on ImageNet run:

poetry run yolo-train --data config/coco.data  --pretrained_weights weights/darknet53.conv.74

Tensorboard

Track training progress in Tensorboard:

poetry run tensorboard --logdir='logs' --port=6006

Storing the logs on a slow drive possibly leads to a significant training speed decrease.

You can adjust the log directory using --logdir when running tensorboard and yolo-train.

Train on Custom Dataset

Custom model

Run the commands below to create a custom model definition, replacing with the number of classes in your dataset.

./config/create_custom_model.sh <num-classes>  # Will create custom model 'yolov3-custom.cfg'

Classes

Add class names to data/custom/classes.names. This file should have one row per class name.

Image Folder

Move the images of your dataset to data/custom/images/.

Annotation Folder

Move your annotations to data/custom/labels/. The dataloader expects that the annotation file corresponding to the image data/custom/images/train.jpg has the path data/custom/labels/train.txt. Each row in the annotation file should define one bounding box, using the syntax label_idx x_center y_center width height. The coordinates should be scaled [0, 1], and the label_idx should be zero-indexed and correspond to the row number of the class name in data/custom/classes.names.

Define Train and Validation Sets

In data/custom/train.txt and data/custom/valid.txt, add paths to images that will be used as train and validation data respectively.

Train

To train on the custom dataset run:

poetry run yolo-train --model config/yolov3-custom.cfg --data config/custom.data

Add --pretrained_weights weights/darknet53.conv.74 to train using a backend pretrained on ImageNet.

API

You are able to import the modules of this repo in your own project if you install the pip package pytorchyolo.

An example prediction call from a simple OpenCV python script would look like this:

import cv2
from pytorchyolo import detect, models

# Load the YOLO model
model = models.load_model(
  "/yolov3.cfg", 
  "/yolov3.weights")

# Load the image as an numpy array
img = cv2.imread("")

# Runs the YOLO model on the image 
boxes = detect.detect_image(model, img)

print(boxes)

For more advanced usage look at the method's doc strings.

Credit

YOLOv3: An Incremental Improvement

Joseph Redmon, Ali Farhadi

Abstract
We present some updates to YOLO! We made a bunch of little design changes to make it better. We also trained this new network that’s pretty swell. It’s a little bigger than last time but more accurate. It’s still fast though, don’t worry. At 320 × 320 YOLOv3 runs in 22 ms at 28.2 mAP, as accurate as SSD but three times faster. When we look at the old .5 IOU mAP detection metric YOLOv3 is quite good. It achieves 57.9 AP50 in 51 ms on a Titan X, compared to 57.5 AP50 in 198 ms by RetinaNet, similar performance but 3.8× faster. As always, all the code is online at https://pjreddie.com/yolo/.

[Paper] [Project Webpage] [Authors' Implementation]

@article{yolov3,
  title={YOLOv3: An Incremental Improvement},
  author={Redmon, Joseph and Farhadi, Ali},
  journal = {arXiv},
  year={2018}
}
Owner
Erik Linder-Norén
ML engineer at Apple. Excited about machine learning, basketball and building things.
Erik Linder-Norén
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
Deep Learning Emotion decoding using EEG data from Autism individuals

Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D

Juan Manuel Mayor Torres 12 Dec 08, 2022
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Yuliang Guo 233 Jan 06, 2023
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Code for paper Novel View Synthesis via Depth-guided Skip Connections

Novel View Synthesis via Depth-guided Skip Connections Code for paper Novel View Synthesis via Depth-guided Skip Connections @InProceedings{Hou_2021_W

8 Mar 14, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023