Minimal PyTorch implementation of YOLOv3

Overview

PyTorch-YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Ubuntu CI PyPI pyversions PyPI license

Installation

Installing from source

For normal training and evaluation we recommend installing the package from source using a poetry virtual enviroment.

git clone https://github.com/eriklindernoren/PyTorch-YOLOv3
cd PyTorch-YOLOv3/
pip3 install poetry --user
poetry install

You need to join the virtual enviroment by runing poetry shell in this directory before running any of the following commands without the poetry run prefix. Also have a look at the other installing method, if you want to use the commands everywhere without opening a poetry-shell.

Download pretrained weights

./weights/download_weights.sh

Download COCO

./data/get_coco_dataset.sh

Install via pip

This installation method is recommended, if you want to use this package as a dependency in another python project. This method only includes the code, is less isolated and may conflict with other packages. Weights and the COCO dataset need to be downloaded as stated above. See API for further information regarding the packages API. It also enables the CLI tools yolo-detect, yolo-train, and yolo-test everywhere without any additional commands.

pip3 install pytorchyolo --user

Test

Evaluates the model on COCO test dataset. To download this dataset as well as weights, see above.

poetry run yolo-test --weights weights/yolov3.weights
Model mAP (min. 50 IoU)
YOLOv3 608 (paper) 57.9
YOLOv3 608 (this impl.) 57.3
YOLOv3 416 (paper) 55.3
YOLOv3 416 (this impl.) 55.5

Inference

Uses pretrained weights to make predictions on images. Below table displays the inference times when using as inputs images scaled to 256x256. The ResNet backbone measurements are taken from the YOLOv3 paper. The Darknet-53 measurement marked shows the inference time of this implementation on my 1080ti card.

Backbone GPU FPS
ResNet-101 Titan X 53
ResNet-152 Titan X 37
Darknet-53 (paper) Titan X 76
Darknet-53 (this impl.) 1080ti 74
poetry run yolo-detect --images data/samples/

Train

For argument descriptions have a lock at poetry run yolo-train --help

Example (COCO)

To train on COCO using a Darknet-53 backend pretrained on ImageNet run:

poetry run yolo-train --data config/coco.data  --pretrained_weights weights/darknet53.conv.74

Tensorboard

Track training progress in Tensorboard:

poetry run tensorboard --logdir='logs' --port=6006

Storing the logs on a slow drive possibly leads to a significant training speed decrease.

You can adjust the log directory using --logdir when running tensorboard and yolo-train.

Train on Custom Dataset

Custom model

Run the commands below to create a custom model definition, replacing with the number of classes in your dataset.

./config/create_custom_model.sh <num-classes>  # Will create custom model 'yolov3-custom.cfg'

Classes

Add class names to data/custom/classes.names. This file should have one row per class name.

Image Folder

Move the images of your dataset to data/custom/images/.

Annotation Folder

Move your annotations to data/custom/labels/. The dataloader expects that the annotation file corresponding to the image data/custom/images/train.jpg has the path data/custom/labels/train.txt. Each row in the annotation file should define one bounding box, using the syntax label_idx x_center y_center width height. The coordinates should be scaled [0, 1], and the label_idx should be zero-indexed and correspond to the row number of the class name in data/custom/classes.names.

Define Train and Validation Sets

In data/custom/train.txt and data/custom/valid.txt, add paths to images that will be used as train and validation data respectively.

Train

To train on the custom dataset run:

poetry run yolo-train --model config/yolov3-custom.cfg --data config/custom.data

Add --pretrained_weights weights/darknet53.conv.74 to train using a backend pretrained on ImageNet.

API

You are able to import the modules of this repo in your own project if you install the pip package pytorchyolo.

An example prediction call from a simple OpenCV python script would look like this:

import cv2
from pytorchyolo import detect, models

# Load the YOLO model
model = models.load_model(
  "/yolov3.cfg", 
  "/yolov3.weights")

# Load the image as an numpy array
img = cv2.imread("")

# Runs the YOLO model on the image 
boxes = detect.detect_image(model, img)

print(boxes)

For more advanced usage look at the method's doc strings.

Credit

YOLOv3: An Incremental Improvement

Joseph Redmon, Ali Farhadi

Abstract
We present some updates to YOLO! We made a bunch of little design changes to make it better. We also trained this new network that’s pretty swell. It’s a little bigger than last time but more accurate. It’s still fast though, don’t worry. At 320 × 320 YOLOv3 runs in 22 ms at 28.2 mAP, as accurate as SSD but three times faster. When we look at the old .5 IOU mAP detection metric YOLOv3 is quite good. It achieves 57.9 AP50 in 51 ms on a Titan X, compared to 57.5 AP50 in 198 ms by RetinaNet, similar performance but 3.8× faster. As always, all the code is online at https://pjreddie.com/yolo/.

[Paper] [Project Webpage] [Authors' Implementation]

@article{yolov3,
  title={YOLOv3: An Incremental Improvement},
  author={Redmon, Joseph and Farhadi, Ali},
  journal = {arXiv},
  year={2018}
}
Owner
Erik Linder-Norén
ML engineer at Apple. Excited about machine learning, basketball and building things.
Erik Linder-Norén
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023