9th place solution

Overview

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution

Team Members

  • Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer at LINE Corp. Kaggle Competition Grandmaster. Z by HP & NVIDIA Global Data Science Ambassador.

  • Bo Liu is currently a Senior Deep Learning Data Scientist at NVIDIA based in the U.S. and a Kaggle Competition Grandmaster.

  • Fuxu Liu is currently a Algorithm Engineer at ReadSense based in the China. Kaggle Competition Grandmaster. Z by HP & NVIDIA Global Data Science Ambassador.

  • Daishu is currently a Senior Research Scientist at Galixir. Kaggle Competition Grandmaster.

Methods

Overview of Methods

Image-to-cell augmentation module

We used two methods to train and make predictions in our pipeline.

Firstly, we use 512 x 512 image size to train and test. For predicting, we loop n times for each image (n is the number of cells in the image), leaving only one cell in each time and masking out the other cells to get single cell predictions.

The second method is trained with 768 x 786 images with random crop to 512 x 512 then tested almost the same way as our first approach. Specifically, we not only mask out the other cells but reposition of the cells in the left to the center of the image as well.

The two methods share the same training process, in which we incorporate two augmentation approach specifically designed for this task, in addition to regular augmentation methods such as random rotation, flipping, cropping, cutout and brightness adjusting. The first augmentation approach is, with a small probability, multiplying the data of the green channel (protein) by a random number in the range of [0.0,0.1] while setting the label to negative to improve the model's ability to recognize negative samples. The other augmentation approach is, with a small probability, setting the green channel to red (Microtubules) or yellow (Endoplasmicreticulum), multiplying it by a random number in the range of [0.6,1.0] and changing the label to the Microtubules or Endoplasmicreticulum.

pseudo-3D cell augmentation module

We pre-crop all the cells of each image and save them locally. Then during training, for each image we randomly select 16 cells. We then set bs=32, so for each batch we have 32x16=512 cells in total.

We resize each cell to 128x128, so the returned data shape from the dataloader is (32, 16, 4, 128, 128) . Next we reshape it into (512, 4, 128, 128) and then use a very common CNN to forward it, the output shape is (512, 19).

In the prediction phase we use the predicted average of different augmented images of a cell as the predicted value for each cell. But during the training process, we rereshape this (512, 19) prediction back into (32, 16, 19) . Then the loss is calculated for each cell with image-level GT label.

Featurziation with deep neural network

We use multipe CNN variants to train, such as EfficientNet, ResNet, DenseNet.

Classification

We average the different model predictions from different methods.

Tree-Structured Directory

├── input

│   ├──hpa-512: 512-image and 512-cell mask

│   │   ├── test

│   │   ├── test_cell_mask

│   │   ├── train

│   │   └── train_cell_mask

│   ├── hpa-seg : official segmentation models

│   └── hpa-single-cell-image-classification : official data and kaggle_2021.tsv

├── output : logs, models and submission

Code

  • S1_external_data_download.py: download external train data

  • S2_data_process.py: generate 512-image and 512-cell mask

  • S3_train_pipeline1.py: train image-to-cell augmentation module

  • S4.1_crop_cells.py: crop training cells for pseudo-3D cell augmentation module

  • S4.2_train_pipeline2.py: train pseudo-3D cell augmentation module

  • S5_predict.py: generate submission.csv

Owner
daishu
daishu
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
Vikrant Deshpande 1 Nov 17, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
Keras Realtime Multi-Person Pose Estimation - Keras version of Realtime Multi-Person Pose Estimation project

This repository has become incompatible with the latest and recommended version of Tensorflow 2.0 Instead of refactoring this code painfully, I create

M Faber 769 Dec 08, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021