C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

Overview

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion

By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedaldi

This is the official implementation of C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion in PyTorch.

Link to paper | Project page

alt text

Dependencies

This is a Python 3.6 package. Required packages can be installed with e.g. pip and conda:

> conda create -n c3dpo python=3.6
> pip install -r requirements.txt

The complete list of dependencies:

  • pytorch (version==1.1.0)
  • numpy
  • tqdm
  • matplotlib
  • visdom
  • pyyaml
  • tabulate

Demo

demo.py downloads and runs a pre-trained C3DPO model on a sample skeleton from the Human36m dataset and generates a 3D figure with a video of the predicted 3D skeleton:

> python ./demo.py

Note that all the outputs are dumped to a local Visdom server. You can start a Visdom server with:

> python -m visdom.server

Images are also stored to the ./data directory. The video will get exported only if there's a functioning ffmpeg callable from the command line.

Downloading data / models

Whenever needed, all datasets / pre-trained models are automatically downloaded to various folders under the ./data directory. Hence, there's no need to bother with a complicated data setup :). In case you would like to cache all the datasets for your own use, simply run the evaluate.py which downloads all the needed data during its run.

Quick start = pre-trained network evaluation

Pre-trained networks can be evaluated by calling evaluate.py:

> python evaluate.py

Note that we provide pre-trained models that will get auto-downloaded during the run of the script to the ./data/exps/ directory. Furthermore, the datasets will also be automatically downloaded in case they are not stored in ./data/datasets/.

Network training + evaluation

Launch experiment.py with the argument cfg_file set to the yaml file corresponding the relevant dataset., e.g.:

> python ./experiment.py --cfg_file ./cfgs/h36m.yaml

will train a C3DPO model for the Human3.6m dataset.

Note that the code supports visualisation in Visdom. In order to enable Visdom visualisations, first start a visdom server with:

> python -m visdom.server

The experiment will output learning curves as well as visualisations of the intermediate outputs to the visdom server.

Furthermore, the results of the evaluation will be periodically updated after every training epoch in ./data/exps/c3dpo/<dataset_name>/eval_results.json. The metrics reported in the paper correspond to 'EVAL_MPJPE_best' and 'EVAL_stress'.

For the list of all possible yaml config files, please see the ./cfgs/ directory. Each config .yaml file corresponds to a training on a different dataset (matching the name of the .yaml file). Expected quantitative results are the same as for the evaluate.py script.

Reference

If you find our work useful, please cite it using the following bibtex reference.

@inproceedings{novotny2019c3dpo,
  title={C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion},
  author={Novotny, David and Ravi, Nikhila and Graham, Benjamin and Neverova, Natalia and Vedaldi, Andrea},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2019}
}

License

C3DPO is distributed under the MIT license, as found in the LICENSE file.

Expected outputs of evaluate.py

Below are the results of the supplied pre-trained models for all datasets:

dataset               MPJPE      Stress
--------------  -----------  ----------
h36m             95.6338     41.5864
h36m_hourglass  145.021      84.693
pascal3d_hrnet   56.8909     40.1775
pascal3d         36.6413     31.0768
up3d_79kp         0.0672771   0.0406902

Note that the models have better performance than published mainly due to letting the models to train for longer.

Notes for reproducibility

Note that the performance reported above was obtained with PyTorch v1.1. If you notice differences in performance make sure to use PyTorch v1.1.

Owner
Meta Research
Meta Research
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022