An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Overview

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations

Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Abstract: We propose using self-supervised discrete representations for the task of speech resynthesis. To generate disentangled representation, we separately extract low-bitrate representations for speech content, prosodic information, and speaker identity. This allows to synthesize speech in a controllable manner. We analyze various state-of-the-art, self-supervised representation learning methods and shed light on the advantages of each method while considering reconstruction quality and disentanglement properties. Specifically, we evaluate the F0 reconstruction, speaker identification performance (for both resynthesis and voice conversion), recordings' intelligibility, and overall quality using subjective human evaluation. Lastly, we demonstrate how these representations can be used for an ultra-lightweight speech codec. Using the obtained representations, we can get to a rate of 365 bits per second while providing better speech quality than the baseline methods.

Quick Links

Setup

Software

Requirements:

  • Python >= 3.6
  • PyTorch v1.8
  • Install dependencies
    git clone https://github.com/facebookresearch/speech-resynthesis.git
    cd speech-resynthesis
    pip install -r requirements.txt

Data

For LJSpeech:

  1. Download LJSpeech dataset from here into data/LJSpeech-1.1 folder.
  2. Downsample audio from 22.05 kHz to 16 kHz and pad
    bash
    python ./scripts/preprocess.py \
    --srcdir data/LJSpeech-1.1/wavs \
    --outdir data/LJSpeech-1.1/wavs_16khz \
    --pad
    

For VCTK:

  1. Download VCTK dataset from here into data/VCTK-Corpus folder.
  2. Downsample audio from 48 kHz to 16 kHz, trim trailing silences and pad
    python ./scripts/preprocess.py \
    --srcdir data/VCTK-Corpus/wav48 \
    --outdir data/VCTK-Corpus/wav16 \
    --trim --pad

Training

F0 Quantizer Model

To train F0 quantizer model, use the following command:

python -m torch.distributed.launch --nproc_per_node 8 train_f0_vq.py \
--checkpoint_path checkpoints/lj_f0_vq \
--config configs/LJSpeech/f0_vqvae.json

Set <NUM_GPUS> to the number of availalbe GPUs on your machine.

Resynthesis Model

To train a resynthesis model, use the following command:

python -m torch.distributed.launch --nproc_per_node <NUM_GPUS> train.py \
--checkpoint_path checkpoints/lj_vqvae \
--config configs/LJSpeech/vqvae256_lut.json

Supported Configurations

Currently, we support the following training schemes:

Dataset SSL Method Dictionary Size Config Path
LJSpeech HuBERT 100 configs/LJSpeech/hubert100_lut.json
LJSpeech CPC 100 configs/LJSpeech/cpc100_lut.json
LJSpeech VQVAE 256 configs/LJSpeech/vqvae256_lut.json
VCTK HuBERT 100 configs/VCTK/hubert100_lut.json
VCTK CPC 100 configs/VCTK/cpc100_lut.json
VCTK VQVAE 256 configs/VCTK/vqvae256_lut.json

Inference

To generate, simply run:

python inference.py \
--checkpoint_file checkpoints/0 \
-n 10 \
--output_dir generations

To synthesize multiple speakers:

python inference.py \
--checkpoint_file checkpoints/vctk_cpc100 \
-n 10 \
--vc \
--input_code_file datasets/VCTK/cpc100/test.txt \
--output_dir generations_multispkr

You can also generate with codes from a different dataset:

python inference.py \
--checkpoint_file checkpoints/lj_cpc100 \
-n 10 \
--input_code_file datasets/VCTK/cpc100/test.txt \
--output_dir generations_vctk_to_lj

Preprocessing New Datasets

CPC / HuBERT Coding

To quantize new datasets with CPC or HuBERT follow the instructions described in the GSLM code.

To parse CPC output:

python scripts/parse_cpc_codes.py \
--manifest cpc_output_file \
--wav-root wav_root_dir \
--outdir parsed_cpc

To parse HuBERT output:

python parse_hubert_codes.py \
--codes hubert_output_file \
--manifest hubert_tsv_file \
--outdir parsed_hubert 

VQVAE Coding

First, you will need to download LibriLight dataset and move it to data/LibriLight.

For VQVAE, train a vqvae model using the following command:

python -m torch.distributed.launch --nproc_per_node <NUM_GPUS> train.py \
--checkpoint_path checkpoints/ll_vq \
--config configs/LibriLight/vqvae256.json

To extract VQVAE codes:

python infer_vqvae_codes.py \
--input_dir folder_with_wavs_to_code \
--output_dir vqvae_output_folder \
--checkpoint_file checkpoints/ll_vq

To parse VQVAE output:

 python parse_vqvae_codes.py \
 --manifest vqvae_output_file \
 --outdir parsed_vqvae

License

You may find out more about the license here.

Citation

@inproceedings{polyak21_interspeech,
  author={Adam Polyak and Yossi Adi and Jade Copet and 
          Eugene Kharitonov and Kushal Lakhotia and 
          Wei-Ning Hsu and Abdelrahman Mohamed and Emmanuel Dupoux},
  title={{Speech Resynthesis from Discrete Disentangled Self-Supervised Representations}},
  year=2021,
  booktitle={Proc. Interspeech 2021},
}

Acknowledgements

This implementation uses code from the following repos: HiFi-GAN and Jukebox, as described in our code.

Owner
Facebook Research
Facebook Research
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022