Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Overview

PyTorch for Deep Learning: Creating and Deploying Deep Learning Applications

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning: Creating and Deploying Deep Learning Applications

Updates

  • 2020/05/25: Chapter 9.75 — Image Self-Supervised Learning

  • 2020/03/01: Chapter 9.5 - Text Generation With GPT-2 And (only) PyTorch, or Semi/Self-Supervision Learning Part 1 (Letters To Charlotte)

  • 2020/05/03: Chapter 7.5 - Quantizing Models


Deutschsprachige Ausgabe

PyTorch für Deep Learning: Anwendungen für Bild-, Ton- und Textdaten entwickeln und deployen

--> https://dpunkt.de/produkt/pytorch-fuer-deep-learning/

Installationshinweise

Versionskontrolle

Nachdem Sie das Github-Repository lokal geklont (bzw. zuvor geforkt) haben!

Conda

1.) Wechseln Sie zunächst in den Zielordner (cd beginners-pytorch-deep-learning), erstellen Sie dann eine (lokale) virtuelle Umgebung und installieren Sie die benötigten Bibliotheken und Pakete:

conda env create --file environment.yml

2.) Anschließend aktivieren Sie die virtuelle Umgebung:

conda activate myenv

3.) Zum Deaktivieren nutzen Sie den Befehl:

conda deactivate

pip

1.) Wechseln Sie zunächst in den Zielordner (cd beginners-pytorch-deep-learning) und erstellen Sie anschließend eine virtuelle Umgebung:

python3 -m venv myenv

2.) Aktivieren Sie die virtuelle Umgebung (https://docs.python.org/3/library/venv.html):

source myenv/bin/activate (Ubuntu/Mac) myenv\Scripts\activate.bat (Windows)

3.) Erstellen Sie eine (lokale) virtuelle Umgebung und installieren Sie die benötigten Bibliotheken und Pakete:

pip3 install -r requirements.txt

4.) Zum Deaktivieren nutzen Sie den Befehl:

deactivate

Bei Nutzung von Jupyter Notebook

1.) Zunächst müssen Sie Jupyter Notebook installieren:

conda install -c conda-forge notebook oder pip3 install notebook

2.) Nach Aktivierung Ihrer virtuellen Umgebung (s.o.) geben Sie den folgenden Befehl in Ihre Kommandozeile ein, um die ipykernel-Bibliothek herunterzuladen:

conda install ipykernel oder pip3 install ipykernel

3.) Installieren Sie einen Kernel mit Ihrer virtuellen Umgebung:

ipython kernel install --user --name=myenv

4.) Starten Sie Jupyter Notebook:

jupyter notebook

5.) Nach Öffnen des Jupyter-Notebook-Startbildschirms wählen Sie auf der rechten Seite das Feld New (bzw. in der Notebook-Ansischt den Reiter Kernel/Change Kernel) und wählen Sie myenv aus.

Google Colaboratory

In Google Colab stehen Ihnen standardmäßig einige Pakete bereits vorinstalliert zur Verfügung. Da sich Neuinstallationen immer nur auf ein Notebook beziehen, können Sie von einer Einrichtung einer virtuellen Umgebung absehen und direkt die Pakete mit Hilfe der Dateien environment.yml oder requirements.txt / requirements_cuda_available.txt wie oben beschrieben installieren, jedoch zusätzlich mit einem vorangestellten ! , bspw. !pip3 install -r requirements .txt.

Owner
Ian Pointer
Ian Pointer
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

97 Nov 29, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022