[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

Related tags

Deep LearningIICNet
Overview

IICNet - Invertible Image Conversion Net

Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). Demo Video | Supplements

Introduction

Reversible image conversion (RIC) aims to build a reversible transformation between specific visual content (e.g., short videos) and an embedding image, where the original content can be restored from the embedding when necessary. This work develops Invertible Image Conversion Net (IICNet) as a generic solution to various RIC tasks due to its strong capacity and task-independent design. Unlike previous encoder-decoder based methods, IICNet maintains a highly invertible structure based on invertible neural networks (INNs) to better preserve the information during conversion. We use a relation module and a channel squeeze layer to improve the INN nonlinearity to extract cross-image relations and the network flexibility, respectively. Experimental results demonstrate that IICNet outperforms the specifically-designed methods on existing RIC tasks and can generalize well to various newly-explored tasks. With our generic IICNet, we no longer need to hand-engineer task-specific embedding networks for rapidly occurring visual content.

Installation

Clone this repository and set up the environment.

git clone https://github.com/felixcheng97/IICNet.git
cd IICNet/
conda env create -f iic.yml

Dataset Preparation

We conduct experments on 5 multiple-and-single RIC tasks in the main paper and 2 single-and-single RIC tasks in the supplements. Note that all the datasets are placed under the ./datasets directory.

Task 1: Spatial-Temporal Video Embedding

We use the high-quality DAVIS 2017 video dataset in this task. You could download the Semi-supervised 480p dataset through this link. Unzip, rename, and place them under the dataset directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |   |-- DAVIS-2017-test-challenge (rename the DAVIS folder from DAVIS-2017-test-challenge-480p.zip)
    |   |-- DAVIS-2017-test-dev       (rename the DAVIS folder from DAVIS-2017-test-dev-480p.zip)
    |   `-- DAVIS-2017-trainval       (rename the DAVIS folder from DAVIS-2017-trainval-480p.zip)
    |-- DIV2K
    |-- flicker
    |-- flicker1024
    |-- Real-Matting
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts
python davis_annotation.py

Task 2: Mononizing Binocular Images

We use the Flickr1024 dataset with the official train and test splits in this task. You could download the dataset through this link. Place the dataset under the dataset directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |-- DIV2K
    |-- flicker
    |-- flicker1024
    |   |-- Test
    |   |-- Train_1
    |   |-- Train_2
    |   |-- Train_3
    |   |-- Train_4
    |   `-- Validation
    |-- Real-Matting
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts
python flicker1024_annotation.py

Task 3: Embedding Dual-View Images

We use the DIV2K dataset in this task. You could download the dataset through this link. Download the corresponding datasets and place them under the dataset directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |-- DIV2K
    |   |-- DIV2K_train_HR
    |   |-- DIV2K_train_LR_bicubic
    |   |   |-- X2
    |   |   |-- X4
    |   |   |-- X8
    |   |-- DIV2K_valid_HR
    |   `-- DIV2K_valid_LR_bicubic
    |       |-- X2
    |       |-- X4
    |       `-- X8
    |-- flicker
    |-- flicker1024
    |-- Real-Matting
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts
python div2kddual_annotation.py

Task 4: Embedding Multi-Layer Images / Composition and Decomposition

We use the Adobe Deep Matting dataset and the Real Matting dataset in this task. You could download the Adobe Deep Matting dataset according to their instructions through this link. You could download the Real Matting dataset on its official GitHub page or through this direct link. Place the downloaded datasets under the dataset directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |   |-- Addobe_Deep_Matting_Dataset.zip
    |   |-- train2014.zip
    |   |-- VOC2008test.tar
    |   `-- VOCtrainval_14-Jul-2008.tar
    |-- DAVIS-2017
    |-- DIV2K
    |-- flicker
    |-- flicker1024
    |-- Real-Matting
    |   |-- fixed-camera
    |   `-- hand-held
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts

# process the Adobe Matting dataset
python adobe_process.py
python adobe_annotation.py

# process the Real Matting dataset
python real_process.py
python real_annotation.py

Task 5: Hiding Images in an Image

We use the Flicker 2W dataset in this task. You could download the dataset on its official GitHub page through this link. Place the unzipped dataset under the datasets directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |-- DIV2K
    |-- flicker
    |   `-- flicker_2W_images
    |-- flicker1024
    |-- Real-Matting
    `-- VOCdevkit

Then run the following scripts for annotation.

cd codes/scripts
python flicker_annotation.py

Task 6 (supp): Invertible Grayscale

We use the VOC2012 dataset in this task. You could download the training/validation dataset through this link. Place the unzipped dataset under the datasets directory with the following structure.

.
`-- datasets
    |-- Adobe-Matting
    |-- DAVIS-2017
    |-- DIV2K
    |-- flicker
    |-- flicker1024
    |-- Real-Matting
    `-- VOCdevkit
        `-- VOC2012

Then run the following scripts for annotation

cd codes/scripts
python voc2012_annotation.py

Task 7 (supp): Invertible Image Rescaling

We use the DIV2K dataset in this task. Please check Task 3: Embedding Dual-View Images to download the corresponding dataset. Then run the following scripts for annotation.

cd codes/scripts
python div2ksr_annotation.py

Training

To train a model for a specific task, run the following script:

cd codes
OMP_NUM_THREADS=4 python train.py -opt ./conf/train/<xxx>.yml

To enable distributed training with multiple GPUs for a specific task, simply assign a list of gpu_ids in the yml file and run the following script. Note that since training with multiple GPU is not tested yet, we suggest to train a model with a single GPU.

cd codes
OMP_NUM_THREADS=4 python -m torch.distributed.launch --nproc_per_node=4 --master_port 29501 train.py -opt ./conf/train/<xxx>.yml

Testing

We provide our trained models in our paper for your reference. Download all the pretrained weights of our models from Google Drive or Baidu Drive (extraction code: e377). Unzip the zip file and place pretrained models under the ./experiments directory.

To test a model for a specific task, run the following script:

cd codes
OMP_NUM_THREADS=4 python test.py -opt ./conf/test/<xxx>.yml

Acknowledgement

Some codes of this repository benefits from Invertible Image Rescaling (IRN).

Citation

If you find this work useful, please cite our paper:

@inproceedings{cheng2021iicnet,
    title = {IICNet: A Generic Framework for Reversible Image Conversion}, 
    author = {Ka Leong Cheng and Yueqi Xie and Qifeng Chen},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
    year = {2021}
}

Contact

Feel free to open an issue if you have any question. You could also directly contact us through email at [email protected] (Ka Leong Cheng) and [email protected] (Yueqi Xie).

Owner
felixcheng97
felixcheng97
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022