Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

Overview

snc4onnx

Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& pip install -U onnx-simplifier \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U snc4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/snc4onnx:latest

### docker build
$ docker build -t pinto0309/snc4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/snc4onnx:latest
$ cd /workdir

2. CLI Usage

$ snc4onnx -h

usage:
  snc4onnx [-h]
    --input_onnx_file_paths INPUT_ONNX_FILE_PATHS [INPUT_ONNX_FILE_PATHS ...]
    --srcop_destop SRCOP_DESTOP [SRCOP_DESTOP ...]
    [--op_prefixes_after_merging OP_PREFIXES_AFTER_MERGING [OP_PREFIXES_AFTER_MERGING ...]]
    [--output_onnx_file_path OUTPUT_ONNX_FILE_PATH]
    [--output_of_onnx_file_in_the_process_of_fusion]
    [--non_verbose]

optional arguments:
  -h, --help
    show this help message and exit

  --input_onnx_file_paths INPUT_ONNX_FILE_PATHS [INPUT_ONNX_FILE_PATHS ...]
    Input onnx file paths. At least two onnx files must be specified.

  --srcop_destop SRCOP_DESTOP [SRCOP_DESTOP ...]
    The names of the output OP to join from and the input OP to join to are
    out1 in1 out2 in2 out3 in3 .... format.
    In other words, to combine model1 and model2,
    --srcop_destop model1_out1 model2_in1 model1_out2 model2_in2
    Also, --srcop_destop can be specified multiple times.
    The first --srcop_destop specifies the correspondence between model1 and model2,
    and the second --srcop_destop specifies the correspondence
    between model1 and model2 combined and model3.
    It is necessary to take into account that the prefix specified
    in op_prefixes_after_merging is given at the beginning of each OP name.
    e.g. To combine model1 with model2 and model3.
    --srcop_destop model1_src_op1 model2_dest_op1 model1_src_op2 model2_dest_op2 ...
    --srcop_destop comb_model12_src_op1 model3_dest_op1 comb_model12_src_op2 model3_dest_op2 ...

  --op_prefixes_after_merging OP_PREFIXES_AFTER_MERGING [OP_PREFIXES_AFTER_MERGING ...]
    Since a single ONNX file cannot contain multiple OPs with the same name,
    a prefix is added to all OPs in each input ONNX model to avoid duplication.
    Specify the same number of paths as input_onnx_file_paths.
    e.g. --op_prefixes_after_merging model1_prefix model2_prefix model3_prefix ...

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
    Output onnx file path.

  --output_of_onnx_file_in_the_process_of_fusion
    Output of onnx files in the process of fusion.

  --non_verbose
    Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from snc4onnx import combine
>>> help(combine)

Help on function combine in module snc4onnx.onnx_network_combine:

combine(
  srcop_destop: List[str],
  op_prefixes_after_merging: Union[List[str], NoneType] = [],
  input_onnx_file_paths: Union[List[str], NoneType] = [],
  onnx_graphs: Union[List[onnx.onnx_ml_pb2.ModelProto], NoneType] = [],
  output_onnx_file_path: Union[str, NoneType] = '',
  output_of_onnx_file_in_the_process_of_fusion: Union[bool, NoneType] = False,
  non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    srcop_destop: List[str]
        The names of the output OP to join from and the input OP to join to are
        [["out1","in1"], ["out2","in2"], ["out3","in3"]] format.

        In other words, to combine model1 and model2,
        srcop_destop =
            [
                ["model1_out1_opname","model2_in1_opname"],
                ["model1_out2_opname","model2_in2_opname"]
            ]

        The first srcop_destop specifies the correspondence between model1 and model2,
        and the second srcop_destop specifies the correspondence
        between model1 and model2 combined and model3.
        It is necessary to take into account that the prefix specified
        in op_prefixes_after_merging is given at the beginning of each OP name.

        e.g. To combine model1 with model2 and model3.
        srcop_destop =
            [
                [
                    ["model1_src_op1","model2_dest_op1"],
                    ["model1_src_op2","model2_dest_op2"]
                ],
                [
                    ["combined_model1.2_src_op1","model3_dest_op1"],
                    ["combined_model1.2_src_op2","model3_dest_op2"]
                ],
                ...
            ]

    op_prefixes_after_merging: List[str]
        Since a single ONNX file cannot contain multiple OPs with the same name,
        a prefix is added to all OPs in each input ONNX model to avoid duplication.
        Specify the same number of paths as input_onnx_file_paths.
        e.g. op_prefixes_after_merging = ["model1_prefix","model2_prefix","model3_prefix", ...]

    input_onnx_file_paths: Optional[List[str]]
        Input onnx file paths. At least two onnx files must be specified.
        Either input_onnx_file_paths or onnx_graphs must be specified.
        onnx_graphs If specified, ignore input_onnx_file_paths and process onnx_graphs.
        e.g. input_onnx_file_paths = ["model1.onnx", "model2.onnx", "model3.onnx", ...]

    onnx_graphs: Optional[List[onnx.ModelProto]]
        List of onnx.ModelProto. At least two onnx graphs must be specified.
        Either input_onnx_file_paths or onnx_graphs must be specified.
        onnx_graphs If specified, ignore input_onnx_file_paths and process onnx_graphs.
        e.g. onnx_graphs = [graph1, graph2, graph3, ...]

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If not specified, .onnx is not output.
        Default: ''

    output_of_onnx_file_in_the_process_of_fusion: Optional[bool]
        Output of onnx files in the process of fusion.
        Default: False

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    combined_graph: onnx.ModelProto
        Combined onnx ModelProto

4. CLI Execution

$ snc4onnx \
--input_onnx_file_paths crestereo_init_iter2_120x160.onnx crestereo_next_iter2_240x320.onnx \
--srcop_destop output flow_init \
--op_prefixes_after_merging init next

5. In-script Execution

5-1. ONNX files

from snc4onnx import combine

combined_graph = combine(
    srcop_destop = [
        ['output', 'flow_init']
    ],
    op_prefixes_after_merging = [
        'init',
        'next',
    ],
    input_onnx_file_paths = [
        'crestereo_init_iter2_120x160.onnx',
        'crestereo_next_iter2_240x320.onnx',
    ],
    non_verbose = True,
)

5-2. onnx.ModelProtos

from snc4onnx import combine

combined_graph = combine(
    srcop_destop = [
        ['output', 'flow_init']
    ],
    op_prefixes_after_merging = [
        'init',
        'next',
    ],
    onnx_graphs = [
        graph1,
        graph2,
        graph3,
    ],
    non_verbose = True,
)

6. Sample

6-1 INPUT <-> OUTPUT

  • Summary

    image

  • Model.1

    image

  • Model.2

    image

  • Merge

    $ snc4onnx \
    --input_onnx_file_paths crestereo_init_iter2_120x160.onnx crestereo_next_iter2_240x320.onnx \
    --op_prefixes_after_merging init next \
    --srcop_destop output flow_init
  • Result

    image image

6-2 INPUT + INPUT

  • Summary

    image

  • Model.1

    image

  • Model.2

    image

  • Merge

    $ snc4onnx \
    --input_onnx_file_paths objectron_camera_224x224.onnx objectron_chair_224x224.onnx \
    --srcop_destop input_1 input_1 \
    --op_prefixes_after_merging camera chair \
    --output_onnx_file_path objectron_camera_chair_224x224.onnx
  • Result

    image image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md
  2. https://github.com/PINTO0309/sne4onnx
  3. https://github.com/PINTO0309/snd4onnx
  4. https://github.com/PINTO0309/scs4onnx
  5. https://github.com/PINTO0309/sog4onnx
  6. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

Simple node deletion tool for onnx.
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser. PyTorch ,ONNX and TensorRT implementation of YOLOv4
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

Releases(1.0.11)
  • 1.0.11(Jan 2, 2023)

  • 1.0.10(Jan 2, 2023)

  • 1.0.9(Sep 7, 2022)

    • Add short form parameter

      $ snc4onnx -h
      
      usage:
        snc4onnx [-h]
          -if INPUT_ONNX_FILE_PATHS [INPUT_ONNX_FILE_PATHS ...]
          -sd SRCOP_DESTOP [SRCOP_DESTOP ...]
          [-opam OP_PREFIXES_AFTER_MERGING [OP_PREFIXES_AFTER_MERGING ...]]
          [-of OUTPUT_ONNX_FILE_PATH]
          [-f]
          [-n]
      
      optional arguments:
        -h, --help
          show this help message and exit.
      
        -if INPUT_ONNX_FILE_PATHS [INPUT_ONNX_FILE_PATHS ...], --input_onnx_file_paths INPUT_ONNX_FILE_PATHS [INPUT_ONNX_FILE_PATHS ...]
            Input onnx file paths. At least two onnx files must be specified.
      
        -sd SRCOP_DESTOP [SRCOP_DESTOP ...], --srcop_destop SRCOP_DESTOP [SRCOP_DESTOP ...]
            The names of the output OP to join from and the input OP to join to are
            out1 in1 out2 in2 out3 in3 ....
            format.
            In other words, to combine model1 and model2,
            --srcop_destop model1_out1 model2_in1 model1_out2 model2_in2
            Also, --srcop_destop can be specified multiple times.
            The first --srcop_destop specifies the correspondence between model1 and model2,
            and the second --srcop_destop specifies the correspondence between
            model1 and model2 combined and model3.
            It is necessary to take into account that the prefix specified
            in op_prefixes_after_merging is
            given at the beginning of each OP name.
            e.g. To combine model1 with model2 and model3.
            --srcop_destop model1_src_op1 model2_dest_op1 model1_src_op2 model2_dest_op2 ...
            --srcop_destop combined_model1.2_src_op1 model3_dest_op1 combined_model1.2_src_op2 model3_dest_op2 ...
      
        -opam OP_PREFIXES_AFTER_MERGING [OP_PREFIXES_AFTER_MERGING ...], --op_prefixes_after_merging OP_PREFIXES_AFTER_MERGING [OP_PREFIXES_AFTER_MERGING ...]
            Since a single ONNX file cannot contain multiple OPs with the same name,
            a prefix is added to all OPs in each input ONNX model to avoid duplication.
            Specify the same number of paths as input_onnx_file_paths.
            e.g. --op_prefixes_after_merging model1_prefix model2_prefix model3_prefix ...
      
        -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
            Output onnx file path.
      
        -f, --output_of_onnx_file_in_the_process_of_fusion
            Output of onnx files in the process of fusion.
      
        -n, --non_verbose
            Do not show all information logs. Only error logs are displayed.
      
    Source code(tar.gz)
    Source code(zip)
  • 1.0.8(Sep 6, 2022)

    1. Fixed a bug that caused INPUT names to be corrupted. There was a problem with the removal of prefixes added during the model merging process.
      • before: main_input -> put (bug)
      • after: main_input -> input
      • Stop using lstrip and change to forward matching logic with re.sub
    2. Added process to clean up OUTPUT prefixes as much as possible image
    Source code(tar.gz)
    Source code(zip)
  • 1.0.7(May 25, 2022)

  • 1.0.6(May 7, 2022)

  • 1.0.5(May 1, 2022)

  • 1.0.4(Apr 27, 2022)

    • Change op_prefixes_after_merging to optional
    • Added duplicate OP name check
      • If there is a duplicate OP name, the model cannot be combined and the process is aborted with the following error message.
        ERROR: 
        There is a duplicate OP name after merging models.
        op_name:input count:2, op_name:output count:2
        Avoid duplicate OP names by specifying a prefix in op_prefixes_after_merging.
        
    Source code(tar.gz)
    Source code(zip)
  • 1.0.3(Apr 24, 2022)

  • 1.0.2(Apr 11, 2022)

  • 1.0.1(Apr 10, 2022)

  • 1.0.0(Apr 10, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
StyleMapGAN - Official PyTorch Implementation

StyleMapGAN - Official PyTorch Implementation StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing Hyunsu Kim, Yunj

NAVER AI 425 Dec 23, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022