Bayesian dessert for Lasagne

Overview

Gelato

Coverage Status

Bayesian dessert for Lasagne

Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the best ways to deal with uncertainty, overfitting but still having good performance. Gelato will help to use bayes for neural networks. Library heavily relies on Theano, Lasagne and PyMC3.

Installation

  • from github (assumes bleeding edge pymc3 installed)
    # pip install git+git://github.com/pymc-devs/pymc3.git
    pip install git+https://github.com/ferrine/gelato.git
  • from source
    git clone https://github.com/ferrine/gelato
    pip install -r gelato/requirements.txt
    pip install -e gelato

Usage

I use generic approach for decorating all Lasagne at once. Thus, for using Gelato you need to replace import statements for layers only. For constructing a network you need to be the in pm.Model context environment.

Warning

  • lasagne.layers.noise is not supported
  • lasagne.layers.normalization is not supported (theano problems with default updates)
  • functions from lasagne.layers are hidden in gelato as they use Lasagne classes. Some exceptions are done for lasagne.layers.helpers. I'll try to solve the problem generically in future.

Examples

For comprehensive example of using Gelato you can reference this notebook

Life Hack

Any spec class can be used standalone so feel free to use it everywhere

References

Charles Blundell et al: "Weight Uncertainty in Neural Networks" (arXiv preprint arXiv:1505.05424)

You might also like...
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

Safe Bayesian Optimization
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

Code for
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

(under submission) Bayesian Integration of a Generative Prior for Image Restoration
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

Bayesian Image Reconstruction using Deep Generative Models
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

Supporting code for the paper
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Comments
  • Exception in example NB

    Exception in example NB

    I'm up-to-date on pymc3 and gelato.

    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    /Users/twiecki/anaconda/lib/python3.6/site-packages/theano/gof/op.py in __call__(self, *inputs, **kwargs)
        624                 try:
    --> 625                     storage_map[ins] = [self._get_test_value(ins)]
        626                     compute_map[ins] = [True]
    
    /Users/twiecki/anaconda/lib/python3.6/site-packages/theano/gof/op.py in _get_test_value(cls, v)
        580         detailed_err_msg = utils.get_variable_trace_string(v)
    --> 581         raise AttributeError('%s has no test value %s' % (v, detailed_err_msg))
        582 
    
    AttributeError: Softmax.0 has no test value  
    Backtrace when that variable is created:
    
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 533, in run_cell
        return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2717, in run_cell
        interactivity=interactivity, compiler=compiler, result=result)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2821, in run_ast_nodes
        if self.run_code(code, result):
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code
        exec(code_obj, self.user_global_ns, self.user_ns)
      File "<ipython-input-18-7dd01309b711>", line 37, in <module>
        prediction = gelato.layers.get_output(network)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/lasagne/layers/helper.py", line 190, in get_output
        all_outputs[layer] = layer.get_output_for(layer_inputs, **kwargs)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/lasagne/layers/dense.py", line 124, in get_output_for
        return self.nonlinearity(activation)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/lasagne/nonlinearities.py", line 44, in softmax
        return theano.tensor.nnet.softmax(x)
    
    
    During handling of the above exception, another exception occurred:
    
    ValueError                                Traceback (most recent call last)
    <ipython-input-18-7dd01309b711> in <module>()
         44                    prediction,
         45                    observed=target_var,
    ---> 46                    total_size=total_size)
    
    /Users/twiecki/working/projects/pymc/pymc3/distributions/distribution.py in __new__(cls, name, *args, **kwargs)
         35                 raise TypeError("observed needs to be data but got: {}".format(type(data)))
         36             total_size = kwargs.pop('total_size', None)
    ---> 37             dist = cls.dist(*args, **kwargs)
         38             return model.Var(name, dist, data, total_size)
         39         else:
    
    /Users/twiecki/working/projects/pymc/pymc3/distributions/distribution.py in dist(cls, *args, **kwargs)
         46     def dist(cls, *args, **kwargs):
         47         dist = object.__new__(cls)
    ---> 48         dist.__init__(*args, **kwargs)
         49         return dist
         50 
    
    /Users/twiecki/working/projects/pymc/pymc3/distributions/discrete.py in __init__(self, p, *args, **kwargs)
        429         super(Categorical, self).__init__(*args, **kwargs)
        430         try:
    --> 431             self.k = tt.shape(p)[-1].tag.test_value
        432         except AttributeError:
        433             self.k = tt.shape(p)[-1]
    
    /Users/twiecki/anaconda/lib/python3.6/site-packages/theano/gof/op.py in __call__(self, *inputs, **kwargs)
        637                         raise ValueError(
        638                             'Cannot compute test value: input %i (%s) of Op %s missing default value. %s' %
    --> 639                             (i, ins, node, detailed_err_msg))
        640                     elif config.compute_test_value == 'ignore':
        641                         # silently skip test
    
    ValueError: Cannot compute test value: input 0 (Softmax.0) of Op Shape(Softmax.0) missing default value.  
    Backtrace when that variable is created:
    
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 533, in run_cell
        return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2717, in run_cell
        interactivity=interactivity, compiler=compiler, result=result)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2821, in run_ast_nodes
        if self.run_code(code, result):
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code
        exec(code_obj, self.user_global_ns, self.user_ns)
      File "<ipython-input-18-7dd01309b711>", line 37, in <module>
        prediction = gelato.layers.get_output(network)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/lasagne/layers/helper.py", line 190, in get_output
        all_outputs[layer] = layer.get_output_for(layer_inputs, **kwargs)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/lasagne/layers/dense.py", line 124, in get_output_for
        return self.nonlinearity(activation)
      File "/Users/twiecki/anaconda/lib/python3.6/site-packages/lasagne/nonlinearities.py", line 44, in softmax
        return theano.tensor.nnet.softmax(x)
    
    opened by twiecki 12
  • Integrate opvi

    Integrate opvi

    I'm currently integrating recent changes in PyMC3 to gelato. There are a lot of changes. Everyone is welcome for discussion.

    Here are the most remarkable features:

    • no more with context when using gelato layers
    from gelato.layers import *
    import pymc3 as pm
    # get data somehow
    inp = InputLayer(shape)
    out = DenseLayer(inp, 1, W=NormalSpec(sd=LognormalSpec(sd=.1)))
    out = DenseLayer(out, 1, W=NormalSpec(sd=LognormalSpec(sd=.1)))
    with out.root:
        pm.Normal('y', mu=get_output(out, {inp:x}),
                  observed=y)
        approx = pm.fit(10000)
    
    • Flexible Specs you can do almost everything. What to do if we want different shapes there is an open question
    from gelato import *
    import theano.tensor as tt
    import pymc3 as pm
    func = as_spec_op(tt.nlinalg.matrix_power)
    expr0= func(NormalSpec() * LaplaceSpec(), 2)
    expr1 = expr0 / 100 - NormalSpec()
    with Model() as model:
        var = expr((10, 10))
        assert var.tag.test_value.shape == (10, 10)
        assert len(model.free_RVs) == 3
        fit(100)
    U = NormalSpec()
    V = UniformSpec()
    V = V / V.norm(2)
    W = U*V
    with pm.Model() as model:
        result = W((3, 2), name='weight_normalization')
    
    opened by ferrine 2
  • Fix example

    Fix example

    refere to #7. I've updated example using new pm.Minibatch API. All was running good with the following theanorc:

    [global]
    device=cpu
    floatX=float32
    mode=FAST_RUN
    optimizer_including=cudnn
    
    [lib]
    cnmem=0.95
    
    [nvcc]
    fastmath=True
    flags = -I/usr/local/cuda-8.0-cudnnv5.1/include -L/usr/local/cuda-8.0-cudnnv5.1/lib64
    
    [blas]
    ldflag = -L/usr/lib/openblas-base -Lusr/local/cuda-8.0-cudnnv5.1/lib64 -lopenblas
    
    [DebugMode]
    check_finite=1
    
    [cuda]
    root=/usr/local/cuda-8.0-cudnnv5.1/
    

    pip freeze output

    alabaster==0.7.10
    algopy==0.5.3
    Babel==2.4.0
    bleach==2.0.0
    CommonMark==0.5.4
    cycler==0.10.0
    Cython==0.25.2
    decorator==4.0.11
    docutils==0.13.1
    entrypoints==0.2.2
    -e git+https://github.com/ferrine/[email protected]#egg=gelato
    h5py==2.7.0
    html5lib==0.999999999
    imagesize==0.7.1
    ipykernel==4.6.1
    ipython==6.0.0
    ipython-genutils==0.2.0
    ipywidgets==6.0.0
    Jinja2==2.9.6
    joblib==0.11
    jsonschema==2.6.0
    jupyter==1.0.0
    jupyter-client==5.0.1
    jupyter-console==5.1.0
    jupyter-core==4.3.0
    Keras==2.0.4
    Lasagne==0.2.dev1
    Mako==1.0.6
    MarkupSafe==1.0
    matplotlib==2.0.0
    mistune==0.7.4
    more-itertools==3.1.0
    nbconvert==5.1.1
    nbformat==4.3.0
    nbsphinx==0.2.13
    nose==1.3.7
    notebook==5.0.0
    numdifftools==0.9.20
    numpy==1.13.0
    pandas==0.20.1
    pandocfilters==1.4.1
    patsy==0.4.1
    pexpect==4.2.1
    pickleshare==0.7.4
    prompt-toolkit==1.0.14
    ptyprocess==0.5.1
    Pygments==2.2.0
    pygpu==0.6.5
    -e git+https://github.com/ferrine/[email protected]#egg=pymc3
    pymongo==3.4.0
    pyparsing==2.2.0
    python-dateutil==2.6.0
    pytz==2017.2
    PyYAML==3.12
    pyzmq==16.0.2
    qtconsole==4.3.0
    recommonmark==0.4.0
    requests==2.13.0
    scikit-learn==0.18.1
    scipy==0.19.1
    seaborn==0.7.1
    simplegeneric==0.8.1
    six==1.10.0
    sklearn==0.0
    snowballstemmer==1.2.1
    Sphinx==1.5.5
    terminado==0.6
    testpath==0.3
    Theano==0.10.0.dev1
    tornado==4.5.1
    tqdm==4.11.2
    traitlets==4.3.2
    wcwidth==0.1.7
    webencodings==0.5.1
    widgetsnbextension==2.0.0
    xmltodict==0.11.0
    
    opened by ferrine 0
  • Not compatible with latest version of pymc3

    Not compatible with latest version of pymc3

    When I attempt to import gelato, it fails with the following error message:

    ---> 19 class LayerModelMeta(pm.model.InitContextMeta):
         20     """Magic comes here
         21     """
    
    AttributeError: module 'pymc3.model' has no attribute 'InitContextMeta'
    

    I believe that InitContextMeta no longer exists in pymc3; it's been merged with ContextMeta.

    I don't know if there are plans to update this repository anytime soon, although it does seem like a useful tool, so it would be great if it worked with the latest pymc3.

    opened by quevivasbien 2
Releases(v0.1.0)
Owner
Maxim Kochurov
Researcher @ NTechLab; MSU/Skoltech; Core Dev @ PyMC3, Geoopt
Maxim Kochurov
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
wlad 2 Dec 19, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022