Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Overview

High-Performance Brain-to-Text Communication via Handwriting

System diagram

Overview

This repo is associated with this manuscript, preprint and dataset. The code can be used to run an offline reproduction of the main result: high-performance neural decoding of attempted handwriting movements. The jupyter notebooks included here implement all steps of the process, including labeling the neural data with HMMs, training an RNN to decode the neural data into sequences of characters, applying a language model to the RNN outputs, and summarizing the performance on held-out data.

Results from each step are saved to disk and used in future steps. Intermediate results and models are available with the data - download these to explore certain steps without needing to run all prior ones (except for Step 3, which you'll need to run on your own because it produces ~100 GB of files).

Results

Below are the main results from my original run of this code. Results are shown from both train/test partitions ('HeldOutTrials' and 'HeldOutBlocks') and were generaetd with this notebook. 95% confidence intervals are reported in brackets for each result.

HeldOutTrials

Character error rate (%) Word error rate (%)
Raw 2.78 [2.20, 3.41] 12.88 [10.28, 15.63]
Bigram LM 0.80 [0.44, 1.22] 3.64 [2.11, 5.34]
Bigram LM + GPT-2 Rescore 0.34 [0.14, 0.61] 1.97 [0.78, 3.41]

HeldOutBlocks

Character error rate (%) Word error rate (%)
Raw 5.32 [4.81, 5.86] 23.28 [21.27, 25.41]
Bigram LM 1.69 [1.32, 2.10] 6.10 [4.97, 7.25]
Bigram LM + GPT-2 Rescore 0.90 [0.62, 1.23] 3.21 [2.37, 4.11]

Train/Test Partitions

Following our manuscript, we use two separate train/test partitions (available with the data): 'HeldOutBlocks' holds out entire blocks of sentences that occur later in each session, while 'HeldOutTrials' holds out single sentences more uniformly.

'HeldOutBlocks' is more challenging because changes in neural activity accrue over time, thus requiring the RNN to be robust to neural changes that it has never seen before from held-out blocks. In 'HeldOutTrials', the RNN can train on other sentences that occur very close in time to each held-out sentence. For 'HeldOutBlocks' we found that training the RNN in the presence of artificial firing rate drifts improved generalization, while this was not necessary for 'HeldOutTrials'.

Dependencies

  • General
    • python>=3.6
    • tensorflow=1.15
    • numpy (tested with 1.17)
    • scipy (tested with 1.1.0)
    • scikit-learn (tested with 0.20)
  • Step 1: Time Warping
  • Steps 4-5: RNN Training & Inference
    • Requires a GPU (calls cuDNN for the GRU layers)
  • Step 6: Bigram Language Model
  • Step 7: GPT-2 Rescoring
Owner
Francis R. Willett
Research Scientist at the Neural Prosthetics Translational Laboratory at Stanford University.
Francis R. Willett
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
Mirco Ravanelli 2.3k Dec 27, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
A paper list for aspect based sentiment analysis.

Aspect-Based-Sentiment-Analysis A paper list for aspect based sentiment analysis. Survey [IEEE-TAC-20]: Issues and Challenges of Aspect-based Sentimen

jiangqn 419 Dec 20, 2022
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

775 Dec 24, 2022
TalkNet: Audio-visual active speaker detection Model

Is someone talking? TalkNet: Audio-visual active speaker detection Model This repository contains the code for our ACM MM 2021 paper, TalkNet, an acti

142 Dec 14, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

Bernhard Liebl 2 Jun 10, 2022
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
A python package for deep multilingual punctuation prediction.

This python library predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language.

Oliver Guhr 27 Dec 22, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a

SeMI Technologies 191 Dec 26, 2022
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
A natural language processing model for sequential sentence classification in medical abstracts.

NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial) A natural language processing model for sequential sentence classification in

Hemanth Chandran 1 Jan 17, 2022
To classify the News into Real/Fake using Features from the Text Content of the article

Hoax-Detector Authenticity of news has now become a major problem. The Idea is to classify the News into Real/Fake using Features from the Text Conten

Aravindhan 1 Feb 09, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Udit Arora 19 Oct 28, 2022