Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Overview

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

This is the master thesis project by Giacomo Arcieri, written at the FZI Research Center for Information Technology (Karlsruhe, Germany).

Introduction

Model-Based Reinforcement Learning (MBRL) has recently become popular as it is expected to solve RL problems with fewer trials (i.e. higher sample efficiency) than model-free methods. However, it is not clear how much of the recent MBRL progress is due to improved algorithms or due to improved models. Hence, this work compares a set of mathematical methods that are commonly used as models for MBRL. This thesis aims to provide a benchmark to assess the model influence on RL algorithms. The evaluated models will be (deterministic) Neural Networks (NNs), ensembles of (deterministic) NNs, Bayesian Neural Networks (BNNs), and Gaussian Processes (GPs). Two different and innovative BNNs are applied: the Concrete Dropout NN and the Anchored Ensembling. The model performance is assessed on a large suite of different benchmarking environments, namely one OpenAI Gym Classic Control problem (Pendulum) and seven PyBullet-Gym tasks (MuJoCo implementation). The RL algorithm the model performance is assessed on is Model Predictive Control (MPC) combined with Random Shooting (RS).

Requirements

This project is tested on Python 3.6.

First, you can perform a minimal installation of OpenAI Gym with

git clone https://github.com/openai/gym.git
cd gym
pip install -e .

Then, you can install Pybullet-Gym with

git clone https://github.com/benelot/pybullet-gym.git
cd pybullet-gym
pip install -e .

Important: Do not use python setup.py install or other Pybullet-Gym installation methods.

Finally, you can install all the dependencies with

pip install -r requirements.txt

Important: There are a couple of changes to make in two Pybullet-Gym envs:

  1. There is currently a mistake in Hopper. This project uses HopperMuJoCoEnv-v0, but this env imports the Roboschool locomotor instead of the MuJoCo locomotor. Open the file
pybullet-gym/pybulletgym/envs/mujoco/envs/locomotion/hopper_env.py

and change

from pybulletgym.envs.roboschool.robots.locomotors import Hopper

with

from pybulletgym.envs.mujoco.robots.locomotors.hopper import Hopper
  1. Ant has obs_dim=111 but only the first 27 obs are important, the others are only zeros. If it is true that these zeros do not affect performance, it is also true they slow down the training, especially for the Gaussian Process. Therefore, it is better to delete these unimportant obs. Open the file
pybullet-gym/pybulletgym/envs/mujoco/robots/locomotors/ant.py

and set obs_dim=27 and comment or delete line 25

np.clip(cfrc_ext, -1, 1).flat

Project Description

Models

The models are defined in the folder models:

  • deterministicNN.py: it includes the deterministic NN (NN) and the deterministic ensemble (ens_NNs).

  • PNN.py: here the Anchored Ensembling is defined following this example. PNN defines one NN of the Anchored Ensembling. This is needed to define ens_PNNs which is the Anchored Ensembling as well as the model applied in the evaluation.

  • ConcreteDropout.py: it defines the Concrete Dropout NN, mainly based on the Yarin Gal's notebook, but also on this other project. First, the ConcreteDropout Layer is defined. Then, the Concrete Dropout NN is designed (BNN). Finally, also an ensemble of Concrete Dropout NNs is defined (ens_BNN), but I did not use it in the model comparison (ens_BNN is extremely slow and BNN is already like an ensemble).

  • GP.py: it defines the Gaussian Process model based on gpflow. Two different versions are applied: the GPR and the SVGP (choose by setting the parameter gp_model). Only the GPR performance is reported in the evaluation because the SVGP has not even solved the Pendulum environment.

RL algorithm

The model performance is evaluated in the following files:

  1. main.py: it is defined the function main which takes all the params that are passed to MB_trainer. Five MB_trainer are initialized, each with a different seed, which are run in parallel. It is also possible to run two models in parallel by setting the param model2 as well.

  2. MB_trainer.py: it includes the initialization of the env and the model as well as the RL training loop. The function play_one_step computes one step of the loop. The model is trained with the function training_step. At the end of the loop, a pickle file is saved, wich includes all the rewards achieved by the model in all the episodes of the env.

  3. play_one_step.py: it includes all the functions to compute one step (i.e. to choose one action): the epsilon greedy policy for the exploration, the Information Gain exploration, and the exploitation of the model with MPC+RS (function get_action). The rewards as well as the RS trajectories are computed with the cost functions in cost_functions.py.

  4. training_step.py: first the relevant information is prepared by the function data_training, then the model is trained with the function training_step.

  5. cost_functions.py: it includes all the cost functions of the envs.

Other two files are contained in the folder rewards:

  • plot_rewards.ipynb: it is the notebook where the model performance is plotted. First, the 5 pickles associated with the 5 seeds are combined in only one pickle. Then, the performance is evaluated with various plots.

  • distribution.ipynb: this notebook inspects the distribution of the seeds in InvertedDoublePendulum (Section 6.9 of the thesis).

Results

Our results show significant differences among models performance do exist.

It is the Concrete Dropout NN the clear winner of the model comparison. It reported higher sample efficiency, overall performance and robustness across different seeds in Pendulum, InvertedPendulum, InvertedDoublePendulum, ReacherPyBullet, HalfCheetah, and Hopper. In Walker2D and Ant it was no worse than the others either.

Authors should be aware of the differences found and distinguish between improvements due to better algorithms or due to better models when they present novel methods.

The figures of the evaluation are reported in the folder rewards/images.

Acknowledgment

Special thanks go to the supervisor of this project David Woelfle.

Owner
Giacomo Arcieri
Giacomo Arcieri
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
PyTorch Implementation of CycleGAN and SSGAN for Domain Transfer (Minimal)

MNIST-to-SVHN and SVHN-to-MNIST PyTorch Implementation of CycleGAN and Semi-Supervised GAN for Domain Transfer. Prerequites Python 3.5 PyTorch 0.1.12

Yunjey Choi 401 Dec 30, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023