This is an implementation of PIFuhd based on Pytorch

Overview

Open-PIFuhd

This is a unofficial implementation of PIFuhd

PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization(CVPR2020)

Implementation

  • Training Coarse PIFuhd
  • Training Fine PIFuhd
  • Inference
  • metrics(P2S, Normal, Chamfer)
  • Gan generates front normal and back normal (Under designing)

Note that the pipeline I design do not consider normal map generated by pix2pixHD because it is Not main difficulty we reimplement PIFuhd. By the way, I will release GAN +PIFuhd soon.

Prerequisites

  • PyTorch>=1.6
  • json
  • PIL
  • skimage
  • tqdm
  • cv2
  • trimesh with pyembree
  • pyexr
  • PyOpenGL
  • freeglut (use sudo apt-get install freeglut3-dev for ubuntu users)
  • (optional) egl related packages for rendering with headless machines. (use apt install libgl1-mesa-dri libegl1-mesa libgbm1 for ubuntu users)
  • face3d

Data processed

We use Render People as our datasets but the data size is 296 (270 for training while 29 for testing) which is less than paper said 500.

Note that we are unable to release the full training data due to the restriction of commertial scans.

Initial data

I modified part codes in PIFu (branch: PIFu-modify, and download it into your project) in order to could process dirs where your model save

bash ./scripts/process_obj.sh [--dir_models_path]
#e.g.  bash ./scripts/process_obj.sh ../Garment/render_people_train/

Rendering data

I modified part codes in PIFu in order to could process dirs where your model save

python -m apps.render_data -i [--dir_models_path] -o [--save_processed_models_path] -s 1024 [Optional: -e]
#-e means use GPU rendering
#e.g.python -m apps.render_data -i ../Garment/render_people_train/ -o ../Garment/render_gen_1024_train/ -s 1024 -e

Render Normal Map

Rendering front and back normal map In Current Project

All config params is set in ./configs/PIFuhd_Render_People_HG_coarse.py, bash ./scripts/generate.sh

# the params you could modify from ./configs/PIFuhd_Render_People_HG_normal_map.py
# the import params here is 
#  e.g. input_dir = '../Garment/render_gen_1024_train/' and cache= "../Garment/cache/render_gen_1024/rp_train/"
# inpud_dir means output render_gen_1024_train
# cache means where save intermediate results like sample points from mesh

After processing all datasets, Tree-Structured Directory looks like following:

render_gen_1024_train/
├── rp_aaron_posed_004_BLD
│   ├── GEO
│   ├── MASK
│   ├── PARAM
│   ├── RENDER
│   ├── RENDER_NORMAL
│   ├── UV_MASK
│   ├── UV_NORMAL
│   ├── UV_POS
│   ├── UV_RENDER
│   └── val.txt
├── rp_aaron_posed_005_BLD
	....

Training

Training coarse-pifuhd

All config params is set in ./configs/PIFuhd_Render_People_HG_coarse.py, Where you could modify all you want.

Note that this project I designed is friend, which means you could easily replace origin backbone, head by yours :)

bash ./scripts/train_pfhd_coarse.sh

Training Fine-PIFuhd

the same as coarse PIFuhd, all config params is set in ./configs/PIFuhd_Render_People_HG_fine.py,

bash ./scripts/train_pfhd_fine.sh

**If you meet memory problems about GPUs, pls reduce batch_size in ./config/*.py **

Inference

bash ./scripts/test_pfhd_coarse.sh
#or 
bash ./scripts/test_pfhd_fine.sh

the results will be saved into checkpoints/PIFuhd_Render_People_HG_[coarse/fine]/gallery/test/model_name/*.obj, then you could use meshlab to view the generate models.

Metrics

export MESA_GL_VERSION_OVERRIDE=3.3 
# eval coarse-pifuhd
python ./tools/eval_pifu.py  --config ./configs/PIFuhd_Render_People_HG_coarse.py
# eval fine-pifuhd
python ./tools/eval_pifu.py  --config ./configs/PIFuhd_Render_People_HG_fine.py

Demo

we provide rendering code using free models in RenderPeople. This tutorial uses rp_dennis_posed_004 model. Please download the model from this link and unzip the content. Use following command to reconstruct the model:


Debug

I provide bool params(debug in all of config files) to you to check whether your points sampled from mesh is right. There are examples:

Visualization

As following show, left is input image, mid is the results of coarse-pifuhd, right is fine-pifuhd

Reconstruction on Render People Datasets

Note that our training datasets are less than official one(270 for our while 450 for paper) resulting in the performance changes in some degree

IoU ACC recall P2S Normal Chamfer
PIFu 0.748 0.880 0.856 1.801 0.1446 2.00
Coarse-PIFuhd(+Front and back normal) 0.865(5cm) 0.931(5cm) 0.923(5cm) 1.242 0.1205 1.4015
Fine-PIFuhd(+Front and back normal) 0.813(3cm) 0.896(3cm) 0.904(5cm) - 0.1138 -

There is an issue why p2s of fine-pifuhd is bit large than coarse-pifuhd. This is because I do not add some post-processing to clean some chaos in reconstruction. However, the details of human mesh produced by fine-pifuhd are obviously better than coarse-pifuhd.

About Me

I hope that this project could provide some contributions to our communities, especially for implicit-field.

By the way, If you think the project is helpful to you, pls don’t forget to star this project : )

Related Research

Monocular Real-Time Volumetric Performance Capture (ECCV 2020) Ruilong Li*, Yuliang Xiu*, Shunsuke Saito, Zeng Huang, Kyle Olszewski, Hao Li

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) Shunsuke Saito, Tomas Simon, Jason Saragih, Hanbyul Joo

ARCH: Animatable Reconstruction of Clothed Humans (CVPR 2020) Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

Robust 3D Self-portraits in Seconds (CVPR 2020) Zhe Li, Tao Yu, Chuanyu Pan, Zerong Zheng, Yebin Liu

Learning to Infer Implicit Surfaces without 3d Supervision (NeurIPS 2019) Shichen Liu, Shunsuke Saito, Weikai Chen, Hao Li

Owner
Lingteng Qiu
good good study, day day up
Lingteng Qiu
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022