Compare GAN code.

Overview

Compare GAN

This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks:

  • losses (such non-saturating GAN, least-squares GAN, and WGAN),
  • penalties (such as the gradient penalty),
  • normalization techniques (such as spectral normalization, batch normalization, and layer normalization),
  • neural architectures (BigGAN, ResNet, DCGAN), and
  • evaluation metrics (FID score, Inception Score, precision-recall, and KID score).

The code is configurable via Gin and runs on GPU/TPU/CPUs. Several research papers make use of this repository, including:

  1. Are GANs Created Equal? A Large-Scale Study [Code]
    Mario Lucic*, Karol Kurach*, Marcin Michalski, Sylvain Gelly, Olivier Bousquet [NeurIPS 2018]

  2. The GAN Landscape: Losses, Architectures, Regularization, and Normalization [Code] [Colab]
    Karol Kurach*, Mario Lucic*, Xiaohua Zhai, Marcin Michalski, Sylvain Gelly [ICML 2019]

  3. Assessing Generative Models via Precision and Recall [Code]
    Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, Sylvain Gelly [NeurIPS 2018]

  4. GILBO: One Metric to Measure Them All [Code]
    Alexander A. Alemi, Ian Fischer [NeurIPS 2018]

  5. A Case for Object Compositionality in Deep Generative Models of Images [Code]
    Sjoerd van Steenkiste, Karol Kurach, Sylvain Gelly [2018]

  6. On Self Modulation for Generative Adversarial Networks [Code]
    Ting Chen, Mario Lucic, Neil Houlsby, Sylvain Gelly [ICLR 2019]

  7. Self-Supervised GANs via Auxiliary Rotation Loss [Code] [Colab]
    Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, Neil Houlsby [CVPR 2019]

  8. High-Fidelity Image Generation With Fewer Labels [Code] [Blog Post] [Colab]
    Mario Lucic*, Michael Tschannen*, Marvin Ritter*, Xiaohua Zhai, Olivier Bachem, Sylvain Gelly [ICML 2019]

Installation

You can easily install the library and all necessary dependencies by running: pip install -e . from the compare_gan/ folder.

Running experiments

Simply run the main.py passing a --model_dir (this is where checkpoints are stored) and a --gin_config (defines which model is trained on which data set and other training options). We provide several example configurations in the example_configs/ folder:

  • dcgan_celeba64: DCGAN architecture with non-saturating loss on CelebA 64x64px
  • resnet_cifar10: ResNet architecture with non-saturating loss and spectral normalization on CIFAR-10
  • resnet_lsun-bedroom128: ResNet architecture with WGAN loss and gradient penalty on LSUN-bedrooms 128x128px
  • sndcgan_celebahq128: SN-DCGAN architecture with non-saturating loss and spectral normalization on CelebA-HQ 128x128px
  • biggan_imagenet128: BigGAN architecture with hinge loss and spectral normalization on ImageNet 128x128px

Training and evaluation

To see all available options please run python main.py --help. Main options:

  • To train the model use --schedule=train (default). Training is resumed from the last saved checkpoint.
  • To evaluate all checkpoints use --schedule=continuous_eval --eval_every_steps=0. To evaluate only checkpoints where the step size is divisible by 5000, use --schedule=continuous_eval --eval_every_steps=5000. By default, 3 averaging runs are used to estimate the Inception Score and the FID score. Keep in mind that when running locally on a single GPU it may not be possible to run training and evaluation simultaneously due to memory constraints.
  • To train and evaluate the model use --schedule=eval_after_train --eval_every_steps=0.

Training on Cloud TPUs

We recommend using the ctpu tool to create a Cloud TPU and corresponding Compute Engine VM. We use v3-128 Cloud TPU v3 Pod for training models on ImageNet in 128x128 resolutions. You can use smaller slices if you reduce the batch size (options.batch_size in the Gin config) or model parameters. Keep in mind that the model quality might change. Before training make sure that the environment variable TPU_NAME is set. Running evaluation on TPUs is currently not supported. Use a VM with a single GPU instead.

Datasets

Compare GAN uses TensorFlow Datasets and it will automatically download and prepare the data. For ImageNet you will need to download the archive yourself. For CelebAHq you need to download and prepare the images on your own. If you are using TPUs make sure to point the training script to your Google Storage Bucket (--tfds_data_dir).

Owner
Google
Google ❤️ Open Source
Google
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022
From Canonical Correlation Analysis to Self-supervised Graph Neural Networks

Code for CCA-SSG model proposed in the NeurIPS 2021 paper From Canonical Correlation Analysis to Self-supervised Graph Neural Networks.

Hengrui Zhang 44 Nov 27, 2022
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 08, 2023
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
Scripts used to make and evaluate OpenAlex's concept tagging model

openalex-concept-tagging This repository contains all of the code for getting the concept tagger up and running. To learn more about where this model

OurResearch 18 Dec 09, 2022