Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Overview

Generative Handwriting Demo using TensorFlow

example

example

An attempt to implement the random handwriting generation portion of Alex Graves' paper.

See my blog post at blog.otoro.net for more information.

How to use

I tested the implementation on TensorFlow r0.11 and Pyton 3. I also used the following libraries to help:

svgwrite
IPython.display.SVG
IPython.display.display
xml.etree.ElementTree
argparse
pickle

Training

You will need permission from these wonderful people people to get the IAM On-Line Handwriting data. Unzip lineStrokes-all.tar.gz into the data subdirectory, so that you end up with data/lineStrokes/a01, data/lineStrokes/a02, etc. Afterwards, running python train.py will start the training process.

A number of flags can be set for training if you wish to experiment with the parameters. The default values are in train.py

--rnn_size RNN_SIZE             size of RNN hidden state
--num_layers NUM_LAYERS         number of layers in the RNN
--model MODEL                   rnn, gru, or lstm
--batch_size BATCH_SIZE         minibatch size
--seq_length SEQ_LENGTH         RNN sequence length
--num_epochs NUM_EPOCHS         number of epochs
--save_every SAVE_EVERY         save frequency
--grad_clip GRAD_CLIP           clip gradients at this value
--learning_rate LEARNING_RATE   learning rate
--decay_rate DECAY_RATE         decay rate for rmsprop
--num_mixture NUM_MIXTURE       number of gaussian mixtures
--data_scale DATA_SCALE         factor to scale raw data down by
--keep_prob KEEP_PROB           dropout keep probability

Generating a Handwriting Sample

I've included a pretrained model in /save so it should work out of the box. Running python sample.py --filename example_name --sample_length 1000 will generate 4 .svg files for each example, with 1000 points.

IPython interactive session.

If you wish to experiment with this code interactively, just run %run -i sample.py in an IPython console, and then the following code is an example on how to generate samples and show them inside IPython.

[strokes, params] = model.sample(sess, 800)
draw_strokes(strokes, factor=8, svg_filename = 'sample.normal.svg')
draw_strokes_random_color(strokes, factor=8, svg_filename = 'sample.color.svg')
draw_strokes_random_color(strokes, factor=8, per_stroke_mode = False, svg_filename = 'sample.multi_color.svg')
draw_strokes_eos_weighted(strokes, params, factor=8, svg_filename = 'sample.eos.svg')
draw_strokes_pdf(strokes, params, factor=8, svg_filename = 'sample.pdf.svg')

example1a example1b example1c example1d example1e

Have fun-

License

MIT

Owner
hardmaru
I make simple things with neural networks.
hardmaru
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022