In this tutorial, raster models of soil depth and soil water holding capacity for the United States will be sampled at random geographic coordinates within the state of Colorado.

Overview

Raster_Sampling_Demo

(Resulting graph of this demo)

Background

Sampling values of a raster at specific geographic coordinates can be done with a number of Python libraries, but I believe the task is most easily accomplished with the geospatial library PyGMT. One common reason to do this is for correlating raster values with sample data.

The Demonstration

In this tutorial, raster models of soil depth and soil water holding capacity for the United States will be sampled at random geographic coordinates within the state of Colorado. A linear regression of the data will then be plotted to show what relationship*, if any, exists between the datasets. This comprehensive tutorial covers every step from data acquisition to plotting a graph.

Please keep in mind that with the exception of the folder creation script, all code blocks shown in this demo are intended to be run as part of a complete script, which is included at the bottom of the page.

*This tutorial makes no attempt to interpret the regression plot, nor does it assert the accuracy of the results. It is created purely to demonstrate what might be done with values sampled from rasters at specific geographic coordinates.

Getting Started

Create Project Folders

To follow this demo as written, project folders need to be created on the Desktop. A diagram of the desired directory tree for Windows 10 is shown below:

(Image created with Lucidchart)

These folders can be created either by running the script provided below from anywhere after changing the main_dir file path to reflect your username, or by manually creating a Grid_Track_Demo folder and within it Data, Methods, and Results folders.

'''
Decription:
This script creates project folers if they don't already exist
'''

import os

# main directory path
main_dir = r'C:\Users\USER\Desktop\Grid_Track_Demo'

# path to the directory holding the project data files
data_folder = os.path.join(main_dir, 'Data')

# path to the directory holding the project Python scripts
methods_folder = os.path.join(main_dir, 'Methods')

# path to the directory holding the map generated by the scripts
results_folder = os.path.join(main_dir, 'Results')

directories = [main_dir, data_folder, methods_folder, results_folder]

# Iterates through the list of directories and creates them if they don't already exist
for directory in directories:
    os.makedirs(directory, exist_ok = True)

Data files used and created by the demo script will be located in the Data folder, and the linear regression graph will save to the Results folder. The Methods folder should contain the demo scripts.

Create Project Files

Download Rasters

After creating the project folders, we need to download the rasters that will be used in this demo. This tutorial uses raster models of soil depth and available water holding capacity acquired from the UC Davis SoilWeb website.

While these files aren’t very large, it is good practice to download them in chunks so that larger files can be downloaded if needed in the future; this is done in the demo script function below:

    # automatically downloads soil depth and avalible water holding capacity rasters from the UC Davis SoilWeb website
    def Download_Raster_Files(self):
        import requests
        import os

        # urls of the rasters to be downloaded
        file_urls = {
            'soil_depth':'https://soilmap2-1.lawr.ucdavis.edu/800m_grids/rasters/soil_depth.tif', 
            'water_capacity':'https://soilmap2-1.lawr.ucdavis.edu/800m_grids/rasters/water_storage.tif'
        }

        # iterates through each url and downloads them in chunks to avoid reading large files into strings (https://www.geeksforgeeks.org/downloading-files-web-using-python/)
        for name, url in file_urls.items():

            # creates a response object, but because stream is set to True it only downloads the response headers, while keeping the connection open
            r = requests.get(url, stream = True)

            file_save_name = os.path.join(main_dir, 'Data', '{}.tif'.format(name))

            # downloads a portion of the file data that is 1024 bytes large, writes it to the file, and repeats this until the whole file is downloaded
            with open(file_save_name, 'wb') as tif:
                for chunk in r.iter_content(chunk_size=1024):
                    if chunk:
                        tif.write(chunk)

Generate Random Coordinates

In the absence of real observations at specific coordinates, random coordinates are generated to sample the two rasters. The state of Colorado is chosen as the region in which the random coordinates are generated because it is a square and as such, is easy to define.

This demo script function generates random coordinates within the state of Colorado and saves them to a CSV file:

    # generates a set number of random coordinates within the state of Colorado, then saves them to a CSV file
    def Get_Random_Land_Coordinates(self):
        import random
        import pandas as pd
        import os

        # creates the dataframe that will hold the coordinates
        df_random_coordinates = pd.DataFrame(columns = ['longitude', 'latitude'])
        # number of random coordinates to generate 
        n_random_coordinates = 500

        for i in range(n_random_coordinates):
            # random longitude
            lon = random.uniform(-109.03711, -102.05859)
            lon = round(lon, 5)
            # random latitude
            lat = random.uniform(37.01855, 41.00789)
            lat = round(lat, 5)
            
            # adds the coordinates to the dataframe
            df_random_coordinates = df_random_coordinates.append({'longitude':lon, 'latitude':lat}, ignore_index=True)

        random_us_land_coordinates = os.path.join(main_dir, 'Data', 'random_us_land_coordinates.csv')
        df_random_coordinates.to_csv(random_us_land_coordinates, sep='\t', index=False)

Reproject Rasters

Before the rasters can be sampled with our random coordinates, they need to be converted from their native coordinate reference system to WGS84 so that GPS coordinates can be used to sample the data.

This demo script function reprojects the rasters to the WGS84 coordinate system and saves them as new GeoTIFF files:

    # reprojects the rasters so they are in the WGS84 geographic coordinate system, which will allow GPS coordinates to be used to extract values from them (https://gis.stackexchange.com/questions/346745/how-to-reproject-raster-image-from-wgs84-pseudo-mercator-to-ecef-to-enu-in-pytho)
    def Reproject_Rasters(self):
        import rioxarray
        import os

        models = ['soil_depth','water_capacity']

        for model in models:

            model_input = os.path.join(main_dir, 'Data', '{}.tif').format(model)
            
            # opens the raster
            rds = rioxarray.open_rasterio(model_input)

            # sets the coordinate system that the raster will be reprojected to
            crs = 'EPSG:4326'

            # reprojects the raster to the desired coordinate system
            projected = rds.rio.reproject(crs)

            model_output = os.path.join(main_dir, 'Data', '{}_epsg4326_reprojected.tif').format(model)

            # saves the reprojected raster as a raster
            projected.rio.to_raster(model_output)

Sample Raster Values

Now that the rasters are in the correct projection, they can be sampled with the previously generated coordinates.

This demo script function loops over each raster and samples it at the randomly generated coordinates. A bilinear interpolation is used when doing so because the data is not categorical. Once both rasters have been sampled, the data is saved to a CSV file:

    # extracts values from the rasters at the previously generated random coordinates, then combines the data into a single dataframe and saves it as a CSV file
    def Extract_Values(self):
        import pygmt
        import pandas as pd
        import os

        soil_depth_data = os.path.join(main_dir, 'Data', 'soil_depth_epsg4326_reprojected.tif')
        water_capacity_data = os.path.join(main_dir, 'Data', 'water_capacity_epsg4326_reprojected.tif')
        rasters = {'soil_depth':soil_depth_data, 'water_capacity':water_capacity_data}
        
        coordinates = os.path.join(main_dir, 'Data', 'random_us_land_coordinates.csv')
        df_coordinates = pd.read_csv(coordinates, sep='\t')

        # dataframe that will hold the values extracted from both rasters
        df_unified_raster_data = pd.DataFrame()
        df_unified_raster_data['longitude'] = df_coordinates.longitude
        df_unified_raster_data['latitude'] = df_coordinates.latitude

        # iterates through each raster and extracts data from them using the random coordinates, then adds the data to the df_unified_raster_data dataframe
        for name, raster in rasters.items():

            # creates a dataframe of the random coordinates and the values of the raster at those coordinates
            df_track = pygmt.grdtrack(
                # reads a dataframe of only longitudes and latitudes to get coordinates
                points = df_coordinates,
                # reads the raster
                grid = raster,
                # uses bilinear because soil depth and avalible water holding capacity are not catagorical
                interpolation = 'l',
                # name of the column in the new "df_track" dataframe that will hold the extracted raster values
                newcolname = name
            )
            
            # adds the extracted raster values to the unified dataframe
            df_unified_raster_data[name] = df_track[name]

        unified_raster_data_output = os.path.join(main_dir, 'Data', 'unified_raster_data.csv')
        df_unified_raster_data.to_csv(unified_raster_data_output, sep='\t', index=False)

Create Linear Regression Graph

Now that we have our data, it’s time to visualize it. Linear regressions are a common way to explore potential relationships between datasets, so that’s what will be plotted next.

This demo script function uses the Python library Seaborn to create a scatter-plot of available water holding capacity as a function of soil depth. A linear regression of the data is then plotted on top of it and histograms with density curves are displayed in the margins.

joint_kws = {'scatter_kws':dict(alpha=0.5, s=15)}, ) # creates rug plots at the bottom of each marginal histogram to more show a more granual data distribution g_reg.plot_marginals( # creates a rug plot sns.rugplot, color='royalblue', # sets the height of the rug plot lines height=.05, ) # replaces the automatically applied axis labels with custom ones using bold font g_reg.ax_joint.set_xlabel('$\\bf{Soil\ Depth\ (cm)}$') g_reg.ax_joint.set_ylabel('$\\bf{Avail.\ Water\ Holding\ Capacity\ (cm)}$') graph_output = os.path.join(main_dir, 'Results', 'soil-depth_vs_water_capacity_linear_regression_demo.png') # dpi is the resolution of the saved image plt.savefig(graph_output, dpi=150) ">
    # creates a scatter plot of avalible water holding capacity as a function soil depth, and plots a linear regression line through the points. Histograms are plotted in the margins of the graph
    def Create_Graph(self):
        import matplotlib.pyplot as plt
        import seaborn as sns
        import pandas as pd
        import os

        unified_raster_data = os.path.join(main_dir, 'Data', 'unified_raster_data.csv')

        df_unified_raster = pd.read_csv(unified_raster_data, sep='\t')
        df_unified_raster = df_unified_raster.dropna()

        # sets the data for independant variable
        x = df_unified_raster.soil_depth
        # sets the data for teh dependant variable
        y = df_unified_raster.water_capacity

        # sets the color plaette for the graph background
        sns.set_style("darkgrid")

        # creates a scatter plot with a linear regression line. Histograms are plotted in the margins and have a density curve plotted over the bins
        g_reg = sns.jointplot(
            data = df_unified_raster, 
            x = x,
            y = y,
            # plots a linear regression line 
            kind = "reg",
            # sets the regression line and confidence interval color to something other than the default blue
            line_kws = {'color':'red'}, 
            # sets the scatterplot point opacity and size 
    
     
         
            joint_kws = {'scatter_kws':dict(alpha=0.5, s=15)},   
        )

        # creates rug plots at the bottom of each marginal histogram to more show a more granual data distribution 
        g_reg.plot_marginals(
            # creates a rug plot
            sns.rugplot, 
            color='royalblue',
            # sets the height of the rug plot lines 
            height=.05,
        )

        # replaces the automatically applied axis labels with custom ones using bold font
        g_reg.ax_joint.set_xlabel('$\\bf{Soil\ Depth\ (cm)}$')
        g_reg.ax_joint.set_ylabel('$\\bf{Avail.\ Water\ Holding\ Capacity\ (cm)}$')

        graph_output = os.path.join(main_dir, 'Results', 'soil-depth_vs_water_capacity_linear_regression_demo.png')
        # dpi is the resolution of the saved image
        plt.savefig(graph_output, dpi=150)

     
    

Result

(Resulting graph of this demo. This tutorial makes no attempt to interpret the regression plot, nor does it assert accuracy of the result)

I hope this tutorial has been helpful for anyone looking to sample values from rasters using specific coordinates.

Complete Code

joint_kws = {'scatter_kws':dict(alpha=0.5, s=15)}, ) # creates rug plots at the bottom of each marginal histogram to more show a more granual data distribution g_reg.plot_marginals( # creates a rug plot sns.rugplot, color='royalblue', # sets the height of the rug plot lines height=.05, ) # replaces the automatically applied axis labels with custom ones using bold font g_reg.ax_joint.set_xlabel('$\\bf{Soil\ Depth\ (cm)}$') g_reg.ax_joint.set_ylabel('$\\bf{Avail.\ Water\ Holding\ Capacity\ (cm)}$') graph_output = os.path.join(main_dir, 'Results', 'soil-depth_vs_water_capacity_linear_regression_demo.png') # dpi is the resolution of the saved image plt.savefig(graph_output, dpi=150) grid_track = Grid_Track() grid_track.Download_Raster_Files() toggles = {grid_track.Download_Raster_Files:download_rasters, grid_track.Get_Random_Land_Coordinates:get_random_coordinates, grid_track.Reproject_Rasters:reproject_rasters} for function, toggle in toggles.items(): if toggle == True: function() grid_track.Extract_Values() graph = Create_Graphs() graph.Create_Graph() ">
'''
PyGMT v0.4.1

This script domonstrates how to extract values from rasters using specific coordinates and then apply the values to explore the relationship between soil depth and avalible water holding capacity.

The script automatically downloads rasters of soil depth and avalible water holding capacity for the contiguous continential United States from the University of California, Davis SoilWeb website.
It then reprojects the rasters to the WGS84 geographic coordinate system so that gps coordinates can be used to pull data from it. Next, random coordinates are generated within the extent of the state of Colorado,
and they are used to extract values from the two rasters. Finally, the values are regressed against each other and plotted on a graph.
'''

# main directory for the demo files
main_dir = r'C:\Users\USER\Desktop\Grid_Track_Demo'

# controls whether the project rasters are automatically downloaded
download_rasters = True
# controls whether the rasters are reprojected
reproject_rasters = True
# controls whether a CSV of random coordinates within the state of Colorado is created
get_random_coordinates = True


# class that holds all the functions related to extracting values from rasters with specific coordinates
class Grid_Track():

    # automatically downloads soil depth and avalible water holding capacity rasters from the UC Davis SoilWeb website
    def Download_Raster_Files(self):
        import requests
        import os

        # urls of the rasters to be downloaded
        file_urls = {
            'soil_depth':'https://soilmap2-1.lawr.ucdavis.edu/800m_grids/rasters/soil_depth.tif', 
            'water_capacity':'https://soilmap2-1.lawr.ucdavis.edu/800m_grids/rasters/water_storage.tif'
        }

        # iterates through each url and downloads them in chunks to avoid reading large files into strings (https://www.geeksforgeeks.org/downloading-files-web-using-python/)
        for name, url in file_urls.items():

            # creates a response object, but because stream is set to True it only downloads the response headers, while keeping the connection open
            r = requests.get(url, stream = True)

            file_save_name = os.path.join(main_dir, 'Data', '{}.tif'.format(name))

            # downloads a portion of the file data that is 1024 bytes large, writes it to the file, and repeats this until the whole file is downloaded
            with open(file_save_name, 'wb') as tif:
                for chunk in r.iter_content(chunk_size=1024):
                    if chunk:
                        tif.write(chunk)


    # generates a set number of random coordinates within the state of Colorado, then saves them to a CSV file
    def Get_Random_Land_Coordinates(self):
        import random
        import pandas as pd
        import os

        # creates the dataframe that will hold the coordinates
        df_random_coordinates = pd.DataFrame(columns = ['longitude', 'latitude'])
        # number of random coordinates to generate 
        n_random_coordinates = 500

        for i in range(n_random_coordinates):
            # random longitude
            lon = random.uniform(-109.03711, -102.05859)
            lon = round(lon, 5)
            # random latitude
            lat = random.uniform(37.01855, 41.00789)
            lat = round(lat, 5)
            
            # adds the coordinates to the dataframe
            df_random_coordinates = df_random_coordinates.append({'longitude':lon, 'latitude':lat}, ignore_index=True)

        random_us_land_coordinates = os.path.join(main_dir, 'Data', 'random_us_land_coordinates.csv')
        df_random_coordinates.to_csv(random_us_land_coordinates, sep='\t', index=False)


    # reprojects the rasters so they are in the WGS84 geographic coordinate system, which will allow GPS coordinates to be used to extract values from them (https://gis.stackexchange.com/questions/346745/how-to-reproject-raster-image-from-wgs84-pseudo-mercator-to-ecef-to-enu-in-pytho)
    def Reproject_Rasters(self):
        import rioxarray
        import os

        models = ['soil_depth','water_capacity']

        for model in models:

            model_input = os.path.join(main_dir, 'Data', '{}.tif').format(model)
            
            # opens the raster
            rds = rioxarray.open_rasterio(model_input)

            # sets the coordinate system that the raster will be reprojected to
            crs = 'EPSG:4326'

            # reprojects the raster to the desired coordinate system
            projected = rds.rio.reproject(crs)

            model_output = os.path.join(main_dir, 'Data', '{}_epsg4326_reprojected.tif').format(model)

            # saves the reprojected raster as a raster
            projected.rio.to_raster(model_output)
        

    # extracts values from the rasters at the previously generated random coordinates, then combines the data into a single dataframe and saves it as a CSV file
    def Extract_Values(self):
        import pygmt
        import pandas as pd
        import os

        soil_depth_data = os.path.join(main_dir, 'Data', 'soil_depth_epsg4326_reprojected.tif')
        water_capacity_data = os.path.join(main_dir, 'Data', 'water_capacity_epsg4326_reprojected.tif')
        rasters = {'soil_depth':soil_depth_data, 'water_capacity':water_capacity_data}
        
        coordinates = os.path.join(main_dir, 'Data', 'random_us_land_coordinates.csv')
        df_coordinates = pd.read_csv(coordinates, sep='\t')

        # dataframe that will hold the values extracted from both rasters
        df_unified_raster_data = pd.DataFrame()
        df_unified_raster_data['longitude'] = df_coordinates.longitude
        df_unified_raster_data['latitude'] = df_coordinates.latitude

        # iterates through each raster and extracts data from them using the random coordinates, then adds the data to the df_unified_raster_data dataframe
        for name, raster in rasters.items():

            # creates a dataframe of the random coordinates and the values of the raster at those coordinates
            df_track = pygmt.grdtrack(
                # reads a dataframe of only longitudes and latitudes to get coordinates
                points = df_coordinates,
                # reads the raster
                grid = raster,
                # uses bilinear because soil depth and avalible water holding capacity are not catagorical
                interpolation = 'l',
                # name of the column in the new "df_track" dataframe that will hold the extracted raster values
                newcolname = name
            )
            
            # adds the extracted raster values to the unified dataframe
            df_unified_raster_data[name] = df_track[name]

        unified_raster_data_output = os.path.join(main_dir, 'Data', 'unified_raster_data.csv')
        df_unified_raster_data.to_csv(unified_raster_data_output, sep='\t', index=False)


# class that holds all the functions pretaining to graphing the data
class Create_Graphs():
    
    # creates a scatter plot of avalible water holding capacity as a function soil depth, and plots a linear regression line through the points. Histograms are plotted in the margins of the graph
    def Create_Graph(self):
        import matplotlib.pyplot as plt
        import seaborn as sns
        import pandas as pd
        import os

        unified_raster_data = os.path.join(main_dir, 'Data', 'unified_raster_data.csv')

        df_unified_raster = pd.read_csv(unified_raster_data, sep='\t')
        df_unified_raster = df_unified_raster.dropna()

        # sets the data for independant variable
        x = df_unified_raster.soil_depth
        # sets the data for teh dependant variable
        y = df_unified_raster.water_capacity

        # sets the color plaette for the graph background
        sns.set_style("darkgrid")

        # creates a scatter plot with a linear regression line. Histograms are plotted in the margins and have a density curve plotted over the bins
        g_reg = sns.jointplot(
            data = df_unified_raster, 
            x = x,
            y = y,
            # plots a linear regression line 
            kind = "reg",
            # sets the regression line and confidence interval color to something other than the default blue
            line_kws = {'color':'red'}, 
            # sets the scatterplot point opacity and size 
    
     
         
            joint_kws = {'scatter_kws':dict(alpha=0.5, s=15)},   
        )

        # creates rug plots at the bottom of each marginal histogram to more show a more granual data distribution 
        g_reg.plot_marginals(
            # creates a rug plot
            sns.rugplot, 
            color='royalblue',
            # sets the height of the rug plot lines 
            height=.05,
        )

        # replaces the automatically applied axis labels with custom ones using bold font
        g_reg.ax_joint.set_xlabel('$\\bf{Soil\ Depth\ (cm)}$')
        g_reg.ax_joint.set_ylabel('$\\bf{Avail.\ Water\ Holding\ Capacity\ (cm)}$')

        graph_output = os.path.join(main_dir, 'Results', 'soil-depth_vs_water_capacity_linear_regression_demo.png')
        # dpi is the resolution of the saved image
        plt.savefig(graph_output, dpi=150)



grid_track = Grid_Track()
grid_track.Download_Raster_Files()

toggles = {grid_track.Download_Raster_Files:download_rasters, grid_track.Get_Random_Land_Coordinates:get_random_coordinates, grid_track.Reproject_Rasters:reproject_rasters}
for function, toggle in toggles.items():
    if toggle == True:
        function()

grid_track.Extract_Values()


graph = Create_Graphs()
graph.Create_Graph()

     
    
Employee Turnover Analysis

Employee Turnover Analysis Submission to the DataCamp competition "Can you help reduce employee turnover?"

Jannik Wiedenhaupt 1 Feb 13, 2022
International Space Station data with Python research 🌎

International Space Station data with Python research 🌎 Plotting ISS trajectory, calculating the velocity over the earth and more. Plotting trajector

Facundo Pedaccio 41 Jun 16, 2022
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 04, 2022
MoRecon - A tool for reconstructing missing frames in motion capture data.

MoRecon - A tool for reconstructing missing frames in motion capture data.

Yuki Nishidate 38 Dec 03, 2022
Reading streams of Twitter data, save them to Kafka, then process with Kafka Stream API and Spark Streaming

Using Streaming Twitter Data with Kafka and Spark Reading streams of Twitter data, publishing them to Kafka topic, process message using Kafka Stream

Rustam Zokirov 1 Dec 06, 2021
Exploring the Top ML and DL GitHub Repositories

This repository contains my work related to my project where I scraped data on the most popular machine learning and deep learning GitHub repositories in order to further visualize and analyze it.

Nico Van den Hooff 17 Aug 21, 2022
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data

Statistical_Modelling Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data Statistical Methods for Decision Ma

Avnika Mehta 1 Jan 27, 2022
The micro-framework to create dataframes from functions.

The micro-framework to create dataframes from functions.

Stitch Fix Technology 762 Jan 07, 2023
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023
A Python package for the mathematical modeling of infectious diseases via compartmental models

A Python package for the mathematical modeling of infectious diseases via compartmental models. Originally designed for epidemiologists, epispot can be adapted for almost any type of modeling scenari

epispot 12 Dec 28, 2022
Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day.

Analyse the limit order book in seconds. Zoom to tick level or get yourself an overview of the trading day. Correlate the market activity with the Apple Keynote presentations.

2 Jan 04, 2022
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
My solution to the book A Collection of Data Science Take-Home Challenges

DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository

Jifu Zhao 1.5k Jan 03, 2023
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

Najibulloh Asror 2 Feb 10, 2022
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022
This is an analysis and prediction project for house prices in King County, USA based on certain features of the house

This is a project for analysis and estimation of House Prices in King County USA The .csv file contains the data of the house and the .ipynb file con

Amit Prakash 1 Jan 21, 2022
talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

David Cournapeau 76 Nov 30, 2022
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023