Data exploration done quick.

Overview

Pandas Tab

Implementation of Stata's tabulate command in Pandas for extremely easy to type one-way and two-way tabulations.

Support:

  • Python 3.7 and 3.8: Pandas >=0.23.x
  • Python 3.9: Pandas >=1.0.x

Background & Purpose

As someone who made the move from Stata to Python, one thing I noticed is that I end up doing fewer tabulations of my data when working in Pandas. I believe that the reason for this has a lot to do with API differences that make it slightly less convenient to run tabulations extremely quickly.

For example, if you want to look at values counts in column "foo", in Stata it's merely tab foo. In Pandas, it's df["foo"].value_counts(). This is over twice the amount of typing.

It's not just a brevity issue. If you want to add one more column and to go from one-way to two-way tabulation (e.g. look at "foo" and "bar" together), this isn't as simple as adding one more column:

  • df[["foo", "bar"]].value_counts().unstack() requires one additional transformation to move away from a multi-indexed series.
  • pd.crosstab(df["foo"], df["bar"]) is a totally different interface from the one-way tabulation.

Pandas Tab attempts to solve these issues by creating an interface more similar to Stata: df.tab("foo") and df.tab("foo", "bar") give you, respectively, your one-way and two-way tabulations.

Example

# using IPython integration:
# ! pip install pandas-tab[full]
# ! pandas_tab init

import pandas as pd

df = pd.DataFrame({
    "foo":  ["a", "a", "b", "a", "b", "c", "a"],
    "bar":  [4,   5,   7,   6,   7,   7,   5],
    "fizz": [12,  63,  23,  36,  21,  28,  42]
})

# One-way tabulation
df.tab("foo")

# Two-way tabulation
df.tab("foo", "bar")

# One-way with aggregation
df.tab("foo", values="fizz", aggfunc=pd.Series.mean)

# Two-way with aggregation
df.tab("foo", "bar", values="fizz", aggfunc=pd.Series.mean)

Outputs:

>> # Two-way tabulation >>> df.tab("foo", "bar") bar 4 5 6 7 foo a 1 2 1 0 b 0 0 0 2 c 0 0 0 1 >>> # One-way with aggregation >>> df.tab("foo", values="fizz", aggfunc=pd.Series.mean) mean foo a 38.25 b 22.00 c 28.00 >>> # Two-way with aggregation >>> df.tab("foo", "bar", values="fizz", aggfunc=pd.Series.mean) bar 4 5 6 7 foo a 12.0 52.5 36.0 NaN b NaN NaN NaN 22.0 c NaN NaN NaN 28.0 ">
>>> # One-way tabulation
>>> df.tab("foo")

     size  percent
foo               
a       4    57.14
b       2    28.57
c       1    14.29

>>> # Two-way tabulation
>>> df.tab("foo", "bar")

bar  4  5  6  7
foo            
a    1  2  1  0
b    0  0  0  2
c    0  0  0  1

>>> # One-way with aggregation
>>> df.tab("foo", values="fizz", aggfunc=pd.Series.mean)

      mean
foo       
a    38.25
b    22.00
c    28.00

>>> # Two-way with aggregation
>>> df.tab("foo", "bar", values="fizz", aggfunc=pd.Series.mean)

bar     4     5     6     7
foo                        
a    12.0  52.5  36.0   NaN
b     NaN   NaN   NaN  22.0
c     NaN   NaN   NaN  28.0

Setup

Full Installation (IPython / Jupyter Integration)

The full installation includes a CLI that adds a startup script to IPython:

pip install pandas-tab[full]

Then, to enable the IPython / Jupyter startup script:

pandas_tab init

You can quickly remove the startup script as well:

pandas_tab delete

More on the startup script in the section IPython / Jupyter Integration.

Simple installation:

If you don't want the startup script, you don't need the extra dependencies. Simply install with:

pip install pandas-tab

IPython / Jupyter Integration

The startup script auto-loads pandas_tab each time you load up a new IPython kernel (i.e. each time you fire up or restart your Jupyter Notebook).

You can run the startup script in your terminal with pandas_tab init.

Without the startup script:

# WITHOUT STARTUP SCRIPT
import pandas as pd
import pandas_tab

df = pd.read_csv("foo.csv")
df.tab("x", "y")

Once you install the startup script, you don't need to do import pandas_tab:

# WITH PANDAS_TAB STARTUP SCRIPT INSTALLED
import pandas as pd

df = pd.read_csv("foo.csv")
df.tab("x", "y")

The IPython startup script is convenient, but there are some downsides to using and relying on it:

  • It needs to load Pandas in the background each time the kernel starts up. For typical data science workflows, this should not be a problem, but you may not want this if your workflows ever avoid Pandas.
  • The IPython integration relies on hidden state that is environment-dependent. People collaborating with you may be unable to replicate your Jupyter notebooks if there are any df.tab()'s in there and you don't import pandas_tab manually.

For that reason, I recommend the IPython integration for solo exploratory analysis, but for collaboration you should still import pandas_tab in your notebook.

Limitations / Known Issues

  • No tests or guarantees for 3+ way cross tabulations. Both pd.crosstab and pd.Series.value_counts support multi-indexing, however this behavior is not yet tested for pandas_tab.
  • Behavior for dropna kwarg mimics pd.crosstab (drops blank columns), not pd.value_counts (include NaN/None in the index), even for one-way tabulations.
  • No automatic hook into Pandas; you must import pandas_tab in your code to register the extensions. Pandas does not currently search entry points for extensions, other than for plotting backends, so it's not clear that there's a clean way around this.
  • Does not mimic Stata's behavior of taking unambiguous abbreviations of column names, and there is no option to turn this on/off.
  • Pandas 0.x is incompatible with Numpy 1.20.x. If using Pandas 0.x, you need Numpy 1.19.x.
  • (Add more stuff here?)
Owner
W.D.
memes
W.D.
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow

ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and

Tsinghua Machine Learning Group 2.2k Dec 28, 2022
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022
The micro-framework to create dataframes from functions.

The micro-framework to create dataframes from functions.

Stitch Fix Technology 762 Jan 07, 2023
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which he recommends to buy. We will use this data to build a portfolio

Backtesting the "Cramer Effect" & Recommendations from Cramer Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which

Gábor Vecsei 12 Aug 30, 2022
Python library for creating data pipelines with chain functional programming

PyFunctional Features PyFunctional makes creating data pipelines easy by using chained functional operators. Here are a few examples of what it can do

Pedro Rodriguez 2.1k Jan 05, 2023
sportsdataverse python package

sportsdataverse-py See CHANGELOG.md for details. The goal of sportsdataverse-py is to provide the community with a python package for working with spo

Saiem Gilani 37 Dec 27, 2022
This python script allows you to manipulate the audience data from Sl.ido surveys

Slido-Automated-VoteBot This python script allows you to manipulate the audience data from Sl.ido surveys Since Slido blocks interference from automat

Pranav Menon 1 Jan 24, 2022
Collections of pydantic models

pydantic-collections The pydantic-collections package provides BaseCollectionModel class that allows you to manipulate collections of pydantic models

Roman Snegirev 20 Dec 26, 2022
Approximate Nearest Neighbor Search for Sparse Data in Python!

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Meta Research 906 Jan 01, 2023
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify.

An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify. The ETL process flows from AWS's S3 into staging tables in AWS Redshift.

1 Feb 11, 2022
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

SPEDAS 98 Dec 22, 2022
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
Developed for analyzing the covariance for OrcVIO

about This repo is developed for analyzing the covariance for OrcVIO environment setup platform ubuntu 18.04 using conda conda env create --file envir

Sean 1 Dec 08, 2021
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
Modular analysis tools for neurophysiology data

Neuroanalysis Modular and interactive tools for analysis of neurophysiology data, with emphasis on patch-clamp electrophysiology. Functions for runnin

Allen Institute 5 Dec 22, 2021
A utility for functional piping in Python that allows you to access any function in any scope as a partial.

WithPartial Introduction WithPartial is a simple utility for functional piping in Python. The package exposes a context manager (used with with) calle

Michael Milton 1 Oct 26, 2021