Data for "Driving the Herd: Search Engines as Content Influencers" paper

Overview

herding_data

Data for "Driving the Herd: Search Engines as Content Influencers" paper

Dataset description

The collection contains 2250 documents, 30 initial relevant documents (round 0) - located in initial_documents.trectext file. 2100 documents (rounds 1-5) created by competitors. 120 documents are the example documents that were manually promoted in the herding method experiments.

This dataset is divided w.r.t. the different experiments for content effect, described in the paper.

Format: trectext. DOCNO Format: ROUND- - -

Relevance Judgments (qrels):

All documents in the collection were judged for relevance. Annotators were presented with both the title and the description of each TREC topic and were asked to classify a document as relevant if it satisfies the information need stated in the description.

A document judged relevant by less than three annotators was labeled as non-relevant (0). Documents judged relevant by at least three, four or five annotators were labeled as marginally relevant (1), fairly relevant (2) and highly relevant (3), respectively. For each experiment the relevance judgment file has ".rel" suffix.

Quality judgements:

All documents in the collection where judged for quality by five annotators. Annotators were presented with the text of the document and were asked to classify the docuemnt as: (1) Valid, (2) Keyword-stuffed, (3) Spam.

A document is deemed as keyword-stuffed if it contained excessive repetition of words which seemed unnatural or artificially introduced.

A document is considered as spam if its content could not possibly satisfy any information need.

If a document is not spam or keywordstuffed, it is considered as valid. Documents judged valid by at least three, four or five annotators were labeled as marginally high-quality (1), fairly high-quality (2) and highly high-quality (3), respectively. For each experiment the quality judgment file has ".ks" suffix.

Queries

We used 30 of ClueWeb09 queries which can be downloded here: http://trec.nist.gov/data/webmain.html.

Example documents

In the herding method experiment for each query and effect an exapmle document, manifesting the desired content effect, was manually promoted to 1'st place. For each effect the example documents are located at "herding__example_documents.trectext" file. The format of document names is: DOCNO Format: ROUND-00- -EXAMPLEDOC

Subtopic effect experiment

This content effect was tested both in terms of herding and biasing approaches. For each query 2 different subtopics were tested. The subtopics were taken from ClueWeb09 subtopics list. The mapping between qid and the subtopic number which was promoted (and the actual information need manifested by the subtopic) is located at _subtopics_map.txt files (in each relevant directory separetly).

We include relevance judgemnts for each document (competing for a rankings w.r.t a query) w.r.t. to both subtopics promoted for the query. Please note that each document was tested w.r.t. a single subtopic (can be induced by the mapping file) during the experiment. The judgments are for both subtopics for analysis porpuses only. Relevance judgments w.r.t. subtopics name is " _relevance_to_subptopic.rel".

The qrels format is: " ".

Directories

Herding

Document_length_effect

The data contained in this directory is related to the documents created in the document length effect experiment (herding method).

Non_relevance_effect

The data contained in this directory is related to the documents created in the non-relevance effect experiment (herding method).

Query_terms_effect

The data contained in this directory is related to the documents created in the query terms effect experiment (herding method).

Subtopic_effect

The data contained in this directory is related to the documents created in the subtopic effect experiment (herding method).

Biasing

Subtopic_effect

The data contained in this directory is related to the documents created in the subtopic effect experiment (biasing method).

Control

The data contained in this directory is related to the documents created in the control group. That is, no expore of any kind of manipulation for this group.

Dummies

The data contained in this directory is related to the documents taken from Raifer et al '17 dataset. Dummies with docnos "DUMMY_{0,1}" where shared over all groups.

Control group and biasing groups where filled with DUMMY_2 dummies (in the docno) as well.

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021