Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Overview

Generic badge Ask Me Anything ! visitors

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always easy to detect it.

In this repo, you will find an implementation of ManTraNet, a manipulation tracing network for detection and localization of image forgeries with anomalous features. With this algorithm, you may find if an image has been falsified and even identify suspicious regions. A little example is displayed below.

It's a faifthful replica of the official implementation using however the library Pytorch. To learn more about this network, I suggest you to read the paper that describes it here.

On top of the MantraNet, there is also a file containing pre-trained weights obtained by the authors which is compatible with this pytorch version.

There is a slight discrepancy between the architecture depicted in the paper compared to the real one implemented and shared on the official repo. I put below the real architecture which is implemented here.

Please note that the rest of the README is largely inspired by the original repo.


What is ManTraNet ?

ManTraNet is an end-to-end image forgery detection and localization solution, which means it takes a testing image as input, and predicts pixel-level forgery likelihood map as output. Comparing to existing methods, the proposed ManTraNet has the following advantages:

  • Simplicity: ManTraNet needs no extra pre- and/or post-processing
  • Fast: ManTraNet puts all computations in a single network, and accepts an image of arbitrary size.
  • Robustness: ManTraNet does not rely on working assumptions other than the local manipulation assumption, i.e. some region in a testing image is modified differently from the rest.

Technically speaking, ManTraNet is composed of two sub-networks as shown below:

  • The Image Manipulation Trace Feature Extractor: It's a feature extraction network for the image manipulation classification task, which is sensitive to different manipulation types, and encodes the image manipulation in a patch into a fixed dimension feature vector.

  • The Local Anomaly Detection Network: It's a network that is designed following the intuition that we need to inspect more and more locally our extracted features if we want to be able to detect many kind of forgeries efficiently.

Where are the pre-trained weights coming from ?

  • The authors have first pretrained the Image Manipulation Trace Feature Extractor with an homemade database containing 385 types of forgeries. Unfortunately, their database is not shared publicly. Then, they trained the Anomaly Detector with four types of synthetic data, i.e. copy-move, splicing, removal, and enhancement.

Mantranet results from the composition of these two networks

The pre-trained weights available in this repo are the results of these two trainings achieved by the authors

Remarks : To train ManTraNet you need your own (relevant) datasets.

Dependency

  • Pytorch >= 1.8.1

Demo

One may simply download the repo and play with the provided ipython notebook.

N.B. :

  • Considering that there is some differences between the implementation of common functions between Tensorflow/Keras and Pytorch, some particular methods of Pytorch (like batch normalization or hardsigmoid) are re-implemented here to match perfectly with the original Tensorflow version

  • MantraNet is an architecture difficult to train without GPU/Multi-CPU. Even in "eval" mode, if you want to use it for detecting forgeries in one image it may take some minutes using only your CPU. It depends on the size of your input image.

  • There is also a slightly different version of MantraNet that uses ConvGRU instead of ConvLSTM in the repo. It enables to speed up a bit the training of the MantraNet without losing efficiency.

Citation :

@InProceedings{Wu_2019_CVPR,
author = {Wu, Yue and AbdAlmageed, Wael and Natarajan, Premkumar},
title = {ManTra-Net: Manipulation Tracing Network for Detection and Localization of Image Forgeries With Anomalous Features},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
Owner
Rony Abecidan
PhD Candidate @ Centrale Lille
Rony Abecidan
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022