MTCNN face detection implementation for TensorFlow, as a PIP package.

Overview

MTCNN

https://travis-ci.org/ipazc/mtcnn.svg?branch=master

Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN from David Sandberg (FaceNet's MTCNN) in Facenet. It is based on the paper Zhang, K et al. (2016) [ZHANG2016].

https://github.com/ipazc/mtcnn/raw/master/result.jpg

INSTALLATION

Currently it is only supported Python3.4 onwards. It can be installed through pip:

$ pip install mtcnn

This implementation requires OpenCV>=4.1 and Keras>=2.0.0 (any Tensorflow supported by Keras will be supported by this MTCNN package). If this is the first time you use tensorflow, you will probably need to install it in your system:

$ pip install tensorflow

or with conda

$ conda install tensorflow

Note that tensorflow-gpu version can be used instead if a GPU device is available on the system, which will speedup the results.

USAGE

The following example illustrates the ease of use of this package:

>>> from mtcnn import MTCNN
>>> import cv2
>>>
>>> img = cv2.cvtColor(cv2.imread("ivan.jpg"), cv2.COLOR_BGR2RGB)
>>> detector = MTCNN()
>>> detector.detect_faces(img)
[
    {
        'box': [277, 90, 48, 63],
        'keypoints':
        {
            'nose': (303, 131),
            'mouth_right': (313, 141),
            'right_eye': (314, 114),
            'left_eye': (291, 117),
            'mouth_left': (296, 143)
        },
        'confidence': 0.99851983785629272
    }
]

The detector returns a list of JSON objects. Each JSON object contains three main keys: 'box', 'confidence' and 'keypoints':

  • The bounding box is formatted as [x, y, width, height] under the key 'box'.
  • The confidence is the probability for a bounding box to be matching a face.
  • The keypoints are formatted into a JSON object with the keys 'left_eye', 'right_eye', 'nose', 'mouth_left', 'mouth_right'. Each keypoint is identified by a pixel position (x, y).

Another good example of usage can be found in the file "example.py." located in the root of this repository. Also, you can run the Jupyter Notebook "example.ipynb" for another example of usage.

BENCHMARK

The following tables shows the benchmark of this mtcnn implementation running on an Intel i7-3612QM CPU @ 2.10GHz, with a CPU-based Tensorflow 1.4.1.

  • Pictures containing a single frontal face:
Image size Total pixels Process time FPS
460x259 119,140 0.118 seconds 8.5
561x561 314,721 0.227 seconds 4.5
667x1000 667,000 0.456 seconds 2.2
1920x1200 2,304,000 1.093 seconds 0.9
4799x3599 17,271,601 8.798 seconds 0.1
  • Pictures containing 10 frontal faces:
Image size Total pixels Process time FPS
474x224 106,176 0.185 seconds 5.4
736x348 256,128 0.290 seconds 3.4
2100x994 2,087,400 1.286 seconds 0.7

MODEL

By default the MTCNN bundles a face detection weights model.

The model is adapted from the Facenet's MTCNN implementation, merged in a single file located inside the folder 'data' relative to the module's path. It can be overriden by injecting it into the MTCNN() constructor during instantiation.

The model must be numpy-based containing the 3 main keys "pnet", "rnet" and "onet", having each of them the weights of each of the layers of the network.

For more reference about the network definition, take a close look at the paper from Zhang et al. (2016) [ZHANG2016].

LICENSE

MIT License.

REFERENCE

[ZHANG2016] (1, 2) Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10):1499–1503.
Owner
Iván de Paz Centeno
Lead Data Scientist, R&D Engineer at Smarkia.
Iván de Paz Centeno
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

MohammadReza Sharifi 5 Jan 01, 2022
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022