A machine learning malware analysis framework for Android apps.

Overview

🕵️ A machine learning malware analysis framework for Android apps. ☢️


DroidDetective is a Python tool for analysing Android applications (APKs) for potential malware related behaviour and configurations. When provided with a path to an application (APK file) Droid Detective will make a prediction (using it's ML model) of if the application is malicious. Features and qualities of Droid Detective include:

  • Analysing which of ~330 permissions are specified in the application's AndroidManifest.xml file. 🙅
  • Analysing the number of standard and proprietary permissions in use in the application's AndroidManifest.xml file. 🧮
  • Using a RandomForest machine learning classifier, trained off the above data, from ~14 malware families and ~100 Google Play Store applications. 💻

🤖 Getting Started

Installation

All DroidDetective dependencies can be installed manually or via the requirements file, with

pip install -r REQUIREMENTS.txt

DroidDetective has been tested on both Windows 10 and Ubuntu 18.0 LTS.

Usage

DroidDetective can be run by providing the Python file with an APK as a command line parameter, such as:

python DroidDetective.py myAndroidApp.apk

If an apk_malware.model file is not present, then the tooling will first train the model and will require a training set of APKs in both a folder at the root of the project called malware and another called normal. Once run successfully a result will be printed onto the CLI on if the model has identified the APK to be malicious or benign. An example of this output can be seen below:

>> Analysed file 'com.android.camera2.apk', identified as not malware.

An additional parameter can be provided to DroidDetective.py as a Json file to save the results to. If this Json file already exists the results of this run will be appended to the Json file.

python DroidDetective.py myAndroidApp.apk output.json

An example of this output Json is as follows:

{
    "com.android.camera2": false,
}

⚗️ Data Science | The ML Model

DroidDetective is a Python tool for analyzing Android applications (APKs) for potential malware related behaviour. This works by training a Random Forest classifier on information derived from both known malware APKs and standard APKs available on the Android app store. This tooling comes pre-trained, however, the model can be re-trained on a new dataset at any time. ⚙️

This model currently uses permissions from an APKs AndroidManifest.xml file as a feature set. This works by creating a dictionary of each standard Android permission and setting the feature to 1 if the permission is present in the APK. Similarly, a feature is added for the amount of permissions in use in the manifest and for the amount of unidentified permissions found in the manifest.

The pre-trained model was trained off approximately 14 malware families (each with one or more APK files), located from ashisdb's repository, and approximately 100 normal applications located from the Google Play Store.

The below denotes the statistics for this ML model:

Accuracy: 0.9310344827586207
Recall: 0.9166666666666666
Precision: 0.9166666666666666
F-Measure: 0.9166666666666666

The top 10 highest weighted features (i.e. Android permissions) used by this model, for identifying malware, can be seen below:

"android.permission.SYSTEM_ALERT_WINDOW": 0.019091367939223395,
"android.permission.ACCESS_NETWORK_STATE": 0.021001765263234648,
"android.permission.ACCESS_WIFI_STATE": 0.02198962579120518,
"android.permission.RECEIVE_BOOT_COMPLETED": 0.026398914436102188,
"android.permission.GET_TASKS": 0.03595458598076517,
"android.permission.WAKE_LOCK": 0.03908212881520419,
"android.permission.WRITE_SMS": 0.057041576632290585,
"android.permission.INTERNET": 0.08816028225034145,
"android.permission.WRITE_EXTERNAL_STORAGE": 0.09835914154294739,
"other_permission": 0.10189463965313218,
"num_of_permissions": 0.12392224814084198

📜 License

GNU General Public License v3.0

Owner
James Stevenson
I’m a Software Engineer and Security Researcher, with a background of over five years in the computer security industry.
James Stevenson
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022