A Python module to encrypt and decrypt data with AES-128 CFB mode.

Related tags

Cryptographycryptocfb
Overview

cryptocfb

PayPal Donate PyPI version Downloads Documentation Status

A Python module to encrypt and decrypt data with AES-128 CFB mode.

This module supports 8/64/128-bit CFB mode. It can encrypt and decrypt large data part by part. It also can do encryption and decryption inplace to reduce memory footprint.

Installation

pip install cryptocfb

Usage

>>> from cryptocfb import CryptoCFB
>>>
>>> key = b'0123456789abcdef'
>>> iv = bytes(reversed(key))
>>> cfb = CryptoCFB(key, iv)
>>>
>>> plain = b'This is a long message that needs to be encrypted.'
>>> cipher = cfb.encrypt(plain)
>>> cipher
bytearray(b"_#\xbf\x02\xd6\x19\x0c)\xd9\x18\xaf\xb9\xa4{JP\xf6j\xa3\xb2\xb2\xc6b\x9f\xae\x82\xa5\xd4\xaeen\xde\x12\x16\xfb\xf6\x079\x83\xd2\xbdC\'\x93\x9e\xc3\xeb\xc7\x03\x82")
>>> len(plain)
50
>>> len(cipher)
50
>>> cfb.reset_vector()
>>>
>>> cfb.decrypt(cipher)
bytearray(b'This is a long message that needs to be encrypted.')
>>> cfb.reset_vector()
>>>
>>> ba = bytearray(plain)
>>> ba1 = ba[0:16]
>>> ba2 = ba[16:32]
>>> ba3 = ba[32:48]
>>> ba4 = ba[48:64]
>>> cfb.crypt_inplace(ba1)
bytearray(b'_#\xbf\x02\xd6\x19\x0c)\xd9\x18\xaf\xb9\xa4{JP')
>>> cfb.crypt_inplace(ba2)
bytearray(b'\xf6j\xa3\xb2\xb2\xc6b\x9f\xae\x82\xa5\xd4\xaeen\xde')
>>> cfb.crypt_inplace(ba3)
bytearray(b"\x12\x16\xfb\xf6\x079\x83\xd2\xbdC\'\x93\x9e\xc3\xeb\xc7")
>>> cfb.crypt_inplace(ba4)
bytearray(b'\x03\x82')
>>> cfb.reset_vector()
>>>
>>> cfb.crypt_inplace(ba1, False)
bytearray(b'This is a long m')
>>> cfb.crypt_inplace(ba2, False)
bytearray(b'essage that need')
>>> cfb.crypt_inplace(ba3, False)
bytearray(b's to be encrypte')
>>> cfb.crypt_inplace(ba4, False)
bytearray(b'd.')
>>> cfb.reset_vector()
>>>
>>> ba
bytearray(b'This is a long message that needs to be encrypted.')
>>> cfb.crypt_inplace(ba)
bytearray(b"_#\xbf\x02\xd6\x19\x0c)\xd9\x18\xaf\xb9\xa4{JP\xf6j\xa3\xb2\xb2\xc6b\x9f\xae\x82\xa5\xd4\xaeen\xde\x12\x16\xfb\xf6\x079\x83\xd2\xbdC\'\x93\x9e\xc3\xeb\xc7\x03\x82")
>>> len(ba)
50
>>> ba.extend(bytearray(14))
>>> ba
bytearray(b"_#\xbf\x02\xd6\x19\x0c)\xd9\x18\xaf\xb9\xa4{JP\xf6j\xa3\xb2\xb2\xc6b\x9f\xae\x82\xa5\xd4\xaeen\xde\x12\x16\xfb\xf6\x079\x83\xd2\xbdC\'\x93\x9e\xc3\xeb\xc7\x03\x82\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00")
>>> cfb.reset_vector()
>>>
>>> cfb.crypt_inplace(ba, False)
bytearray(b'This is a long message that needs to be encrypted.d\xd5\x99vk\x08\x1c\x82\xf0_\xb8\x8aw\x85')
>>> cfb.reset_vector()

AES-128 8-bit CFB mode

The 8-bit CFB mode is less efficient than the default (128-bit) CFB mode. But its advantage is it can encrypt or decrypt data byte by byte. So it is easy to implement data stream encryption or decryption with it.

>>> from cryptocfb import CryptoCFB
>>>
>>> key = b'0123456789abcdef'
>>> iv = bytes(reversed(key))
>>> cfb1 = CryptoCFB(key, iv, 8)
>>> cfb2 = CryptoCFB(key, iv, 8)
>>>
>>> plain = b'This is a long message that needs to be encrypted.'
>>> cipher = bytearray()
>>> decrypted_plain = bytearray()
>>>
>>> for i in range(len(plain)):
...     cb = cfb1.encrypt(plain[i : i + 1])
...     cipher.extend(cb)
...     db = cfb2.decrypt(cb)
...     decrypted_plain.extend(db)
...
>>> cipher
bytearray(b'_\xf7+\xf1`4\x88\x88\x88\xba\xfb\x87\xe0_Lc\xbf\xc9AM\x95\xf3\x8dR\x1b>~\x91\x00\x9a\x1f\t\x99$\x02\xfbC\x810_J\x89\x9a\x81>Z\xe6\x9f^H')
>>> decrypted_plain
bytearray(b'This is a long message that needs to be encrypted.')

During transmission, if any encrypted data byte is corrupted, the result decrypted data will be corrupted as well. By the nature of CFB mode, the communication will recover by it self after several garbage bytes (17 bytes in the case below). This self-recovery behaviour makes it suitable for serial communication where data corruption could happen.

>>> from cryptocfb import CryptoCFB
>>>
>>> key = b'0123456789abcdef'
>>> iv = bytes(reversed(key))
>>> cfb1 = CryptoCFB(key, iv, 8)
>>> cfb2 = CryptoCFB(key, iv, 8)
>>>
>>> plain = b'This is a long message that needs to be encrypted.'
>>> cipher = bytearray()
>>> decrypted_plain = bytearray()
>>>
>>> for i in range(len(plain)):
...     cb = cfb1.encrypt(plain[i : i + 1])
...     if i == 10:
...         cb[0] ^= 0x01
...     cipher.extend(cb)
...     db = cfb2.decrypt(cb)
...     decrypted_plain.extend(db)
...
>>> cipher
bytearray(b'_\xf7+\xf1`4\x88\x88\x88\xba\xfa\x87\xe0_Lc\xbf\xc9AM\x95\xf3\x8dR\x1b>~\x91\x00\x9a\x1f\t\x99$\x02\xfbC\x810_J\x89\x9a\x81>Z\xe6\x9f^H')
>>> decrypted_plain
bytearray(b'This is a m\x12\xa2;\xf5\xdb\xbd\x10\xa0\xc2\xbd\xa2\xa4\x05V\xc2\xdd needs to be encrypted.')
Owner
Quan Lin
Quan Lin
The leading native Python SSHv2 protocol library.

Paramiko Paramiko: Python SSH module Copyright: Copyright (c) 2009 Robey Pointer 8.1k Jan 08, 2023

This is a simple Bitcoin non-deterministic wallet address generator coded in Python 3.

This is a simple Bitcoin non-deterministic wallet address generator coded in Python 3. It generates a Private Key in different formats (hex, wif and compressed wif) and corresponding Public Addresses

7 Dec 22, 2022
PeGuard - Windows PE crypter and packing utility

PEGUARD PEGUARD is a file crypter and packing utility. This project was original

11 Nov 28, 2022
Calculate your taxes from cryptocurrency gains

CoinTaxman helps you to bring your income from crypto trading, lending, ... into your tax declaration.

Jeppy 118 Dec 26, 2022
A bot for FaucetCrypto a cryptocurrency faucet. The bot can currently claim PTC ads, main reward and all the shortlinks except exe.io and fc.lc.

A bot for the high paying popular cryptocurrency faucet Faucet Crypto. The bot is built using Python and Selenium, currently it is under active develo

Sourav R S 81 Dec 19, 2022
Tron Wallet (TRX) Crack Finder With Python Just 64 Line

TRXGEN Tron Wallet Finder and Crack With Python Tron Wallet (TRX) Crack Finder With Python Just 64 Line My tools [pycharm + anaconda3 + python3.8 + vi

MMDRZA 6 Dec 18, 2022
Coins farmer for dank memer

Created by TheRider#5308 [feel free to drop by to talk]. Note to some Dank Memer staff reading this: Nah I don't self bot, already got banned for that

Siddhant Kumar 3 Nov 10, 2021
Aza this is a text encryption software

Aza text encryptor General info Aza this is a text encryption software Help command: python aza.py --help Examples python aza.py --text "Sample text h

ToxidWorm 1 Sep 10, 2022
Taishang Credential With Interactive Badges

结合数字徽章的交互式区块链证书 DApp 1 项目简介 DID 与 VC 一直是区块链研究的重要领域,也是区块链落地的重要基础,从「传统证书」到基于DID的VC证书是证书体系范式转移的重要第一步。 但是,在迈出第一步之后我们可以进行更加丰富的尝试,例如尝试将不可转移的徽章与可转移的权益与证书相结合,

1 Nov 07, 2021
A cairo port for Rari Capital Vaults

crypts • Architecture contracts ├─ CryptFactory — "Factory for deploying Crypt contracts for any ERC20 token." ├─ Crypt — "Flexible, minimalist, and g

alucard 9 Sep 02, 2022
A Python script to implement Hill's Cipher Encryption and Decryption.

Hill_Cipher-Encryption_and_Decryption A Python script to implement Hill's Cipher Encryption and Decryption. Initially in the Encryption part, the Plai

Vishvendra Singh 1 Jan 19, 2022
This program can encrypt and decrypt your files so that they can no longer be identified.

File_Cryptographer Table of Contents: About the Program Features Requirements Preview Credits Reach Me See Also About the Program: with this program,

Sina.f 6 Nov 20, 2022
A Trading strategy for the Freqtrade crypto bot.

Important Thing to notice 1) Do not use this strategy on live. It is still undergoing dry-run. 2) The Hyperopt is highly optimized towards "shitcoin"

160 Dec 26, 2022
A really, really bad way to encrypt your text

deoxyencryptingnucleicacids A really, really bad way to encrypt your text. A general description of the scheme Encoding: The ascii plaintext is first

Sam Pinkerton 1 Nov 01, 2021
Deriving RSA public keys from message-signature pairs

The repository contains: Experimental code to calculate RSA public keys based on two known message-signature pairs

Silent Signal 120 Dec 31, 2022
G-Research-Crypto-Competition - Project for passing the ML exam. Dataset took from the competition on the kaggle

G-Research-Crypto-Competition Project for passing the ML exam. Dataset took from

5 Jan 09, 2022
Implementation of Smart Batch Auction for NFT launches on Tezos.

NFT Smart Batch Auction Smart Batch Auctions are an improvement over the traditional first come first serve (FCFS) NFT drops. FCFS design has been in

Anshu Jalan 5 May 06, 2022
Dicoding Machine Learning for Expert Submission 1 - Predictive Analytics

Laporan Proyek Machine Learning - Azhar Rizki Zulma Domain Proyek Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai keuanga

Azhar Rizki Zulma 6 Jul 23, 2022
Crypto Stats and Tweets Data Pipeline using Airflow

Crypto Stats and Tweets Data Pipeline using Airflow Introduction Project Overview This project was brought upon through Udacity's nanodegree program.

Matthew Greene 1 Nov 24, 2021
This is a webpage that contains login and signup page by which the password is stored using elliptic curve cryptography

LoginPage_using_Elliptic_curve_cryptography- This is a webpage that contains login and signup page by which the password is stored using elliptic curv

1 Oct 15, 2021