Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Related tags

Deep LearningSEED
Overview

SEED

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

@Article{fang2020seed,
  author  = {Fang, Zhiyuan and Wang, Jianfeng and Wang, Lijuan and Zhang, Lei and Yang, Yezhou and Liu, Zicheng},
  title   = {SEED: Self-supervised Distillation For Visual Representation},
  journal = {International Conference on Learning Representations},
  year    = {2021},
}

Introduction

This paper is concerned with self-supervised learning for small models. The problem is motivated by our empirical studies that while the widely used contrastive self-supervised learning method has shown great progress on large model training, it does not work well for small models. To address this problem, we propose a new learning paradigm, named SElf-SupErvised Distillation (SEED), where we leverage a larger network (as Teacher) to transfer its representational knowledge into a smaller architecture (as Student) in a self-supervised fashion. Instead of directly learning from unlabeled data, we train a student encoder to mimic the similarity score distribution inferred by a teacher over a set of instances. We show that SEED dramatically boosts the performance of small networks on downstream tasks. Compared with self-supervised baselines, SEED improves the top-1 accuracy from 42.2% to 67.6% on EfficientNet-B0 and from 36.3% to 68.2% on MobileNetV3-Large on the ImageNet-1k dataset. SEED improves the ResNet-50 from 67.4% to 74.3% from the previous MoCo-V2 baseline. image

Preperation

Note: This repository does not contain the ImageNet dataset building, please refer to MoCo-V2 for the enviromental setting & dataset preparation. Be careful if you use FaceBook's ImageNet dataset implementation as the provided dataloader here is to handle TSV ImageNet source.

Self-Supervised Distillation Training

SWAV's 400_ep ResNet-50 model as Teacher architecture for a Student EfficientNet-b1 model with multi-view strategies. Place the pre-trained checkpoint in ./output directory. Remember to change the parameter name in the checkpoint as some module provided by SimCLR, MoCo-V2 and SWAV are inconsistent with regular PyTorch implementations. Here we provide the pre-trained SWAV/MoCo-V2/SimCLR Pre-trained checkpoints, but all credits belong to them.

Teacher Arch. SSL Method Teacher SSL-epochs Link
ResNet-50 MoCo-V1 200 URL
ResNet-50 SimCLR 200 URL
ResNet-50 MoCo-V2 200 URL
ResNet-50 MoCo-V2 800 URL
ResNet-50 SWAV 800 URL
ResNet-101 MoCo-V2 200 URL
ResNet-152 MoCo-V2 200 URL
ResNet-152 MoCo-V2 800 URL
ResNet-50X2 SWAV 400 URL
ResNet-50X4 SWAV 400 URL
ResNet-50X5 SWAV 400 URL

To conduct the training one GPU on single Node using Distributed Training:

python -m torch.distributed.launch --nproc_per_node=1 main_small-patch.py \
       -a efficientnet_b1 \
       -k resnet50 \
       --teacher_ssl swav \
       --distill ./output/swav_400ep_pretrain.pth.tar \
       --lr 0.03 \
       --batch-size 16 \
       --temp 0.2 \
       --workers 4 
       --output ./output \
       --data [your TSV imagenet-folder with train folders]

Conduct linear evaluations on ImageNet-val split:

python -m torch.distributed.launch --nproc_per_node=1  main_lincls.py \
       -a efficientnet_b0 \
       --lr 30 \
       --batch-size 32 \
       --output ./output \ 
       [your TSV imagenet-folder with val folders]

Checkpoints by SEED

Here we provide some pre-trained checkpoints after distillation by SEED. Note: the 800 epcohs one are trained with small-view strategies and have better performances.

Student-Arch. Teacher-Arch. Teacher SSL Student SEED-epochs Link
ResNet-18 ResNet-50 MoCo-V2 200 URL
ResNet-18 ResNet-50W2 SWAV 400 URL
MobileV3-Large ResNet-50 MoCo-V2 200 URL
EfficientNet-B0 ResNet-50W4 SWAV 400 URL
EfficientNet-B0 ResNet-50W2 SWAV 800 URL
EfficientNet-B1 ResNet-50 SWAV 200 URL
EfficientNet-B1 ResNet-152 SWAV 200 URL
ResNet-50 ResNet-50W4 SWAV 400 URL

Glance of the Performances

ImageNet-1k test accuracy (%) using KNN and linear classification for multiple students and MoCov2 pre-trained deeper teacher architectures. ✗ denotes MoCo-V2 self-supervised learning baselines before distillation. * indicates using a deeper teacher encoder pre-trained by SWAV, where additional small-patches are also utilized during distillation and trained for 800 epochs. K denotes Top-1 accuracy using KNN. T-1 and T-5 denote Top-1 and Top-5 accuracy using linear evaluation. First column shows Top-1 Acc. of Teacher network. First row shows the supervised performances of student networks.

Acknowledge

This implementation is largely originated from: MoCo-V2. Thanks SWAV and SimCLR for the pre-trained SSL checkpoints.

This work is done jointly with ASU-APG lab and Microsoft Azure-Florence Group. Thanks my collaborators.

License

SEED is released under the MIT license.

Owner
Jacob
Jacob
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022