Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Overview

Attention Is All You Need Paper Implementation

This is my from-scratch implementation of the original transformer architecture from the following paper: Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Table of Contents

About

"We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. " - Abstract

Transformers came to be a groundbreaking advance in neural network architectures which revolutionized what we can do with NLP and beyond. To name a few applications consider the application of BERT to Google search and GPT to Github Copilot. Those architectures are upgrades on the original transformer architecture described in this seminal paper. The goal of this repository is to provide an implementation that is easy to follow and understand while reading the paper. Setup is easy and everything is runnable on CPU for learning purposes.

✔️ Highly customizable configuration and training loop
✔️ Runnable on CPU and GPU
✔️ W&B integration for detailed logging of every metric
✔️ Pretrained models and their training details
✔️ Gradient Accumulation
✔️ Label smoothing
✔️ BPE and WordLevel Tokenizers
✔️ Dynamic Batching
✔️ Batch Dataset Processing
✔️ Bleu-score calculation during training
✔️ Documented dimensions for every step of the architecture
✔️ Shown progress of translation for an example after every epoch
✔️ Tutorial notebook (Coming soon...)

Setup

Environment

Using Miniconda/Anaconda:

  1. cd path_to_repo
  2. conda env create
  3. conda activate attention-is-all-you-need-paper

Note: Depending on your GPU you might need to switch cudatoolkit to version 10.2

Pretrained Models

To download the pretrained model and tokenizer run:

python scripts/download_pretrained.py

Note: If prompted about wandb setting select option 3

Usage

Training

Before starting training you can either choose a configuration out of available ones or create your own inside a single file src/config.py. The available parameters to customize, sorted by categories, are:

  • Run 🚅 :
    • RUN_NAME - Name of a training run
    • RUN_DESCRIPTION - Description of a training run
    • RUNS_FOLDER_PTH - Saving destination of a training run
  • Data 🔡 :
    • DATASET_SIZE - Number of examples you want to include from WMT14 en-de dataset (max 4,500,000)
    • TEST_PROPORTION - Test set proportion
    • MAX_SEQ_LEN - Maximum allowed sequence length
    • VOCAB_SIZE - Size of the vocabulary (good choice is dependant on the tokenizer)
    • TOKENIZER_TYPE - 'wordlevel' or 'bpe'
  • Training 🏋️‍♂️ :
    • BATCH_SIZE - Batch size
    • GRAD_ACCUMULATION_STEPS - Over how many batches to accumulate gradients before optimizing the parameters
    • WORKER_COUNT - Number of workers used in dataloaders
    • EPOCHS - Number of epochs
  • Optimizer 📉 :
    • BETAS - Adam beta parameter
    • EPS - Adam eps parameter
  • Scheduler ⏲️ :
    • N_WARMUP_STEPS - How many warmup steps to use in the scheduler
  • Model 🤖 :
    • D_MODEL - Model dimension
    • N_BLOCKS - Number of encoder and decoder blocks
    • N_HEADS - Number of heads in the Multi-Head attention mechanism
    • D_FF - Dimension of the Position Wise Feed Forward network
    • DROPOUT_PROBA - Dropout probability
  • Other 🧰 :
    • DEVICE - 'gpu' or 'cpu'
    • MODEL_SAVE_EPOCH_CNT - After how many epochs to save a model checkpoint
    • LABEL_SMOOTHING - Whether to apply label smoothing

Once you decide on the configuration edit the config_name in train.py and do:

$ cd src
$ python train.py

Inference

For inference I created a simple app with Streamlit which runs in your browser. Make sure to train or download the pretrained models beforehand. The app looks at the model directory for model and tokenizer checkpoints.

$ streamlit run app/inference_app.py
app.mp4

Data

Same WMT 2014 data is used for the English-to-German translation task. Dataset contains about 4,500,000 sentence pairs but you can manually specify the dataset size if you want to lower it and see some results faster. When training is initiated the dataset is automatically downloaded, preprocessed, tokenized and dataloaders are created. Also, a custom batch sampler is used for dynamic batching and padding of sentences of similar lengths which speeds up training. HuggingFace 🤗 datasets and tokenizers are used to achieve this very fast.

Architecture

The original transformer architecture presented in this paper consists of an encoder and decoder part purposely included to match the seq2seq problem type of machine translation. There are also encoder-only (e.g. BERT) and decoder-only (e.g. GPT) transformer architectures, those won't be covered here. One of the main features of transformers , in general, is parallelized sequence processing which RNN's lack. Main ingredient here is the attention mechanism which enables creating modified word representations (attention representations) that take into account the word's meaning in relation to other words in a sequence (e.g. the word "bank" can represent a financial institution or land along the edge of a river as in "river bank"). Depending on how we think about a word we may choose to represent it differently. This transcends the limits of traditional word embeddings.

For a detailed walkthrough of the architecture check the notebooks/tutorial.ipynb

Weights and Biases Logs

Weights and Biases is a very powerful tool for MLOps. I integrated it with this project to automatically provide very useful logs and visualizations when training. In fact, you can take a look at how the training looked for the pretrained models at this project link. All logs and visualizations are synced real time to the cloud.

When you start training you will be asked:

wandb: (1) Create W&B account
wandb: (2) Use an existing W&B account
wandb: (3) Don't visualize my results
wandb: Enter your choice: 

For creating and syncing the visualizations to the cloud you will need a W&B account. Creating an account and using it won't take you more than a minute and it's free. If don't want to visualize results select option 3.

Citation

Please use this bibtex if you want to cite this repository:

@misc{Koch2021attentionisallyouneed,
  author = {Koch, Brando},
  title = {attention-is-all-you-need},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/bkoch4142/MISSING}},
}

License

This repository is under an MIT License

License: MIT

Owner
Brando Koch
Machine Learning Engineer with experience in ML, DL , NLP & CV specializing in ConversationalAI & NLP.
Brando Koch
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Discrete Denoising Flows This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1]. To give a short ov

Alexandra Lindt 3 Oct 09, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023