End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

Overview

PDVC

PWC PWC

Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

[paper] [valse论文速递(Chinese)]

This repo supports:

  • two video captioning tasks: dense video captioning and video paragraph captioning
  • two datasets: ActivityNet Captions and YouCook2
  • video features containing C3D, TSN, and TSP.
  • visualization of the generated captions of your own videos

Table of Contents:

Updates

  • (2021.11.19) add code for running PDVC on raw videos and visualize the generated captions (support Chinese and other non-English languages)
  • (2021.11.19) add pretrained models with TSP features. It achieves 9.03 METEOR(2021) and 6.05 SODA_c, a very competitive results on ActivityNet Captions without self-critical sequence training.
  • (2021.08.29) add TSN pretrained models and support YouCook2

Introduction

PDVC is a simple yet effective framework for end-to-end dense video captioning with parallel decoding (PDVC), by formulating the dense caption generation as a set prediction task. Without bells and whistles, extensive experiments on ActivityNet Captions and YouCook2 show that PDVC is capable of producing high-quality captioning results, surpassing the state-of-the-art methods when its localization accuracy is on par with them. pdvc.jpg

Preparation

Environment: Linux, GCC>=5.4, CUDA >= 9.2, Python>=3.7, PyTorch>=1.5.1

  1. Clone the repo
git clone --recursive https://github.com/ttengwang/PDVC.git
  1. Create vitual environment by conda
conda create -n PDVC python=3.7
source activate PDVC
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
conda install ffmpeg
pip install -r requirement.txt
  1. Compile the deformable attention layer (requires GCC >= 5.4).
cd pdvc/ops
sh make.sh

Running PDVC on Your Own Videos

Download a pretrained model (GoogleDrive) with TSP features and put it into ./save. Then run:

video_folder=visualization/videos
output_folder=visualization/output
pdvc_model_path=save/anet_tsp_pdvc/model-best.pth
output_language=en
bash test_and_visualize.sh $video_folder $output_folder $pdvc_model_path $output_language

check the $output_folder, you will see a new video with embedded captions. Note that we generate non-English captions by translating the English captions by GoogleTranslate. To produce chinese captions, set output_language=zh-cn. For other language support, find the abbreviation of your language at this url, and you also may need to download a font supporting your language and put it into ./visualization.

demo.gifdemo.gif

Training and Validation

Download Video Features

cd data/anet/features
bash download_anet_c3d.sh
# bash download_anet_tsn.sh
# bash download_i3d_vggish_features.sh
# bash download_tsp_features.sh

Dense Video Captioning

  1. PDVC with learnt proposals
# Training
config_path=cfgs/anet_c3d_pdvc.yml
python train.py --cfg_path ${config_path} --gpu_id ${GPU_ID}
# The script will evaluate the model for every epoch. The results and logs are saved in `./save`.

# Evaluation
eval_folder=anet_c3d_pdvc # specify the folder to be evaluated
python eval.py --eval_folder ${eval_folder} --eval_transformer_input_type queries --gpu_id ${GPU_ID}
  1. PDVC with ground-truth proposals
# Training
config_path=cfgs/anet_c3d_pdvc.yml
python train.py --cfg_path ${config_path} --gpu_id ${GPU_ID}

# Evaluation
eval_folder=anet_c3d_pdvc_gt
python eval.py --eval_folder ${eval_folder} --eval_transformer_input_type gt_proposals --gpu_id ${GPU_ID}

Video Paragraph Captioning

  1. PDVC with learnt proposals
# Training
config_path=cfgs/anet_c3d_pdvc.yml
python train.py --cfg_path ${config_path} --criteria_for_best_ckpt pc --gpu_id ${GPU_ID} 

# Evaluation
eval_folder=anet_c3d_pdvc # specify the folder to be evaluated
python eval.py --eval_folder ${eval_folder} --eval_transformer_input_type queries --gpu_id ${GPU_ID}
  1. PDVC with ground-truth proposals
# Training
config_path=cfgs/anet_c3d_pdvc_gt.yml
python train.py --cfg_path ${config_path} --criteria_for_best_ckpt pc --gpu_id ${GPU_ID}

# Evaluation
eval_folder=anet_c3d_pdvc_gt
python eval.py --eval_folder ${eval_folder} --eval_transformer_input_type gt_proposals --gpu_id ${GPU_ID}

Performance

Dense video captioning

Model Features config_path Url Recall Precision BLEU4 METEOR2018 METEOR2021 CIDEr SODA_c
PDVC_light C3D cfgs/anet_c3d_pdvcl.yml Google Drive 55.30 58.42 1.55 7.13 7.66 24.80 5.23
PDVC C3D cfgs/anet_c3d_pdvc.yml Google Drive 55.20 57.36 1.82 7.48 8.09 28.16 5.47
PDVC_light TSN cfgs/anet_tsn_pdvcl.yml Google Drive 55.34 57.97 1.66 7.41 7.97 27.23 5.51
PDVC TSN cfgs/anet_tsn_pdvc.yml Google Drive 56.21 57.46 1.92 8.00 8.63 29.00 5.68
PDVC_light TSP cfgs/anet_tsp_pdvcl.yml Google Drive 55.24 57.78 1.77 7.94 8.55 28.25 5.95
PDVC TSP cfgs/anet_tsp_pdvc.yml Google Drive 55.79 57.39 2.17 8.37 9.03 31.14 6.05

Notes:

Video paragraph captioning

Model Features config_path BLEU4 METEOR CIDEr
PDVC C3D cfgs/anet_c3d_pdvc.yml 9.67 14.74 16.43
PDVC TSN cfgs/anet_tsn_pdvc.yml 10.18 15.96 20.66
PDVC TSP cfgs/anet_tsp_pdvc.yml 10.46 16.42 20.91

Notes:

  • Paragraph-level scores are evaluated on the ActivityNet Entity ae-val set.

Citation

If you find this repo helpful, please consider citing:

@inproceedings{wang2021end,
  title={End-to-End Dense Video Captioning with Parallel Decoding},
  author={Wang, Teng and Zhang, Ruimao and Lu, Zhichao and Zheng, Feng and Cheng, Ran and Luo, Ping},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={6847--6857},
  year={2021}
}
@ARTICLE{wang2021echr,
  author={Wang, Teng and Zheng, Huicheng and Yu, Mingjing and Tian, Qian and Hu, Haifeng},
  journal={IEEE Transactions on Circuits and Systems for Video Technology}, 
  title={Event-Centric Hierarchical Representation for Dense Video Captioning}, 
  year={2021},
  volume={31},
  number={5},
  pages={1890-1900},
  doi={10.1109/TCSVT.2020.3014606}}

Acknowledgement

The implementation of Deformable Transformer is mainly based on Deformable DETR. The implementation of the captioning head is based on ImageCaptioning.pytorch. We thanks the authors for their efforts.

Owner
Teng Wang
My research interests focus on deep learning and computer vision.
Teng Wang
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022