Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Related tags

Deep LearningFineGPR
Overview

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Suncheng Xiang

Shanghai Jiao Tong University

Overview

In this paper, we construct and label a large-scale synthetic person dataset named FineGPR with fine-grained attribute distribution. Moreover, aiming to fully exploit the potential of FineGPR and promote the efficient training from millions of synthetic data, we propose an attribute analysis pipeline AOST to learn attribute distribution in target domain, then apply style transfer network to eliminate the gap between synthetic and real-world data and thus is freely deployed to new scenarios. Experiments conducted on benchmarks demonstrate that FineGPR with AOST outperforms (or is on par with) existing real and synthetic datasets, which suggests its feasibility for re-ID and proves the proverbial less-is-more principle. We hope this fine-grained dataset could advance research towards re-ID in real scenarios.


[Paper] [Video Sample] [Related Project]


πŸ”₯ NEWS πŸ”₯

  • [10/2021] πŸ“£ The first FineGPR-C caption dataset involving human describing event is coming !

  • [09/2021] πŸ“£ The large-scale synthetic person dataset FineGPR with fine-grained attribute distribution is released !


Table of Contents πŸ‘€


FineGPR Introduction

The FineGPR dataset is generated by a popular GTA5 game engine that can synthesise images under controllable viewpoints, weathers,illuminations and backgrounds, as well as 13 fine-grained attributes at the identity level πŸ‘ .

Our FineGPR dataset provides fine-grained and accurately configurable annotations, including 36 different viewpoints, 7 different kinds of weathers, 7 different kinds of illuminations, and 9 different kinds of backgrounds.

Viewpoint πŸ“·

Definition of different viewpoints. Viewpoints of one identity are sampled at an interval of 10Β°, e.g. 0Β°-80Β° denotes that a person has 9 different angles in total.

Weather 🌨 and Illumination πŸŽ‡

The exemplars of different weather distribution (left) and illumination distribution (right) from the proposed FineGPR dataset.

Attributes at the Identity Level ⛹️‍♀️

The distributions of attributes at the identity level on FineGPR. The left figure shows the numbers of IDs for each attribute. The middle and right pies illustrate the distribution of the colors of upper-body and low-body clothes respectively.

Some visual exemplars with ID-level pedestrian attributes in the proposed FineGPR dataset, such as Wear short sleeve , Wear dress, Wear hat, Carry bag, etc.


Comparison with existing datasets

Some Mainstream Datasets for Person Re-Identification

For related FineGPR dataset (details of the previous related work, please refer to the our homepage GPR πŸ”Ž :

dataset IDs (ID-Attributes) boxs cams weathers illumination scene resolution
Market-1501 1,501 ( βœ”οΈ ) 32,668 6 - - - low
CUHK03 1,467 ( ❌ ) 14,096 2 - - - low
DukeMTMC-reID 1,404 ( βœ”οΈ ) 36,411 8 - - - low
MSMT17 4,101 ( ❌ ) 126,441 15 - - - vary
SOMAset 50 ( ❌ ) 100,000 250 - - - -
SyRI 100 ( ❌ ) 1,680,000 100 - 140 - -
PersonX 1,266 ( ❌ ) 273,456 6 - - 1 vary
Unreal 3,000 ( ❌ ) 120,000 34 - - 1 low
RandPerson 8,000 ( ❌ ) 1,801,816 19 - - 4 low
FineGPR 1150 ( βœ”οΈ ) 2,028,600 36 7 7 9 high

Link of the Dataset

Data of FineGPR for Viewpoint Analysis

A small subset of FineGPR can be downloaded from the following links:

Directories & Files of images

FineGPR_Dataset 
β”œβ”€β”€ FineGPR/   # This file is our original dataset, we provide the samples of ID=0001 and ID=0003 in this file folder.
β”‚   β”œβ”€β”€ 0001
β”‚   β”‚   β”œβ”€β”€ 0001_c01_w01_l01_p01.jpg 
β”‚   β”‚	β”œβ”€β”€ 0001_c01_w01_l02_p01.jpg  
β”‚   β”‚   β”œβ”€β”€ 0001_c01_w01_l03_p01.jpg
β”‚   β”‚   └── ...
β”‚   β”œβ”€β”€ 0003/
β”‚   β”‚   β”œβ”€β”€ 0003_c01_w01_l01_p06.jpg  
β”‚   β”‚   β”œβ”€β”€ 0003_c01_w01_l02_p06.jpg
β”‚   β”‚   β”œβ”€β”€ 0003_c01_w01_l03_p06.jpg	   
β”‚   β”‚   └── ...
β”‚   └── ...
β”œβ”€β”€ FineGPR_subset   # This file is the subset of FineGPR dataset, each Identity contains 4 images. 
β”‚   β”œβ”€β”€ 0001_c01_w03_l05_p03.jpg 
β”‚   β”œβ”€β”€ 0001_c10_w03_l05_p03.jpg
β”‚   β”œβ”€β”€ 0001_c19_w03_l05_p03.jpg
β”‚   β”œβ”€β”€ 0001_c28_w03_l05_p03.jpg
β”‚   β”œβ”€β”€ 0003_c01_w03_l05_p08.jpg 
β”‚   β”œβ”€β”€ 0003_c10_w03_l05_p08.jpg
β”‚   β”œβ”€β”€ 0003_c19_w03_l05_p08.jpg
β”‚   β”œβ”€β”€ 0003_c28_w03_l05_p08.jpg  
β”‚   └── ...
└── README.md   # Readme file

Name of the image

Taking "0001_c01_w01_l01_p01.jpg" as an example:

  • 0001 is the id of the person
  • c01 is the id of the camera
  • w01 is the id of the weather
  • l01 is the id of the illumination
  • p01 is the id of the background

Viewpoint annotations

FineGPR
β”œβ”€β”€ c01:90Β°      β”œβ”€β”€ c10:180Β°      β”œβ”€β”€ c19:270Β°      β”œβ”€β”€ c28:0Β°
β”œβ”€β”€ c02:100Β°     β”œβ”€β”€ c11:190Β°      β”œβ”€β”€ c20:280Β°      β”œβ”€β”€ c29:10Β°
β”œβ”€β”€ c03:110Β°     β”œβ”€β”€ c12:200Β°      β”œβ”€β”€ c21:290Β°      β”œβ”€β”€ c30:20Β°
β”œβ”€β”€ c04:120Β°     β”œβ”€β”€ c13:210Β°      β”œβ”€β”€ c22:300Β°      β”œβ”€β”€ c31:30Β°
β”œβ”€β”€ c05:130Β°     β”œβ”€β”€ c14:220Β°      β”œβ”€β”€ c23:310Β°      β”œβ”€β”€ c32:40Β°
β”œβ”€β”€ c06:140Β°     β”œβ”€β”€ c15:230Β°      β”œβ”€β”€ c24:320Β°      β”œβ”€β”€ c33:50Β°
β”œβ”€β”€ c07:150Β°     β”œβ”€β”€ c16:240Β°      β”œβ”€β”€ c25:330Β°      β”œβ”€β”€ c34:60Β°
β”œβ”€β”€ c08:160Β°     β”œβ”€β”€ c17:250Β°      β”œβ”€β”€ c26:340Β°      β”œβ”€β”€ c35:70Β°
└── c09:170Β°     └── c18:260Β°      └── c27:350Β°      └── c36:80Β°

Weather annotations

FineGPR
β”œβ”€β”€ w01:Sunny
β”œβ”€β”€ w02:Clouds    
β”œβ”€β”€ w03:Overcast
β”œβ”€β”€ w04:Foggy   
β”œβ”€β”€ w05:Neutral
β”œβ”€β”€ w06:Blizzard 
└── w07:Snowlight 	   

Illumination annotations

FineGPR
β”œβ”€β”€ l01:Midnight
β”œβ”€β”€ l02:Dawn    
β”œβ”€β”€ l03:Forenoon
β”œβ”€β”€ l04:Noon   
β”œβ”€β”€ l05:Afternoon
β”œβ”€β”€ l06:Dusk 
└── l07:Night 	   

Scene annotations

FineGPR
β”œβ”€β”€ p01:Urban
β”œβ”€β”€ p02:Urban   
β”œβ”€β”€ p03:Wild
β”œβ”€β”€ p04:Urban   
β”œβ”€β”€ p05:Wild
β”œβ”€β”€ p06:Urban
β”œβ”€β”€ p07:Urban
β”œβ”€β”€ p08:Wild 
└── p09:Urban 	   

Method

πŸ’‘ The two-stage pipeline AOST to learn attribute distribution of target domain. Firstly, we learn attribute distribution of real domain on the basis of XGBoost & PSO learning system. Secondly, we perform style transfer to enhance the reality of optimal dataset. Finally, the transferred data are adopted for downstream re-ID task.


Results

Performance comparison with existing Real and Synthetic datasets on Market-1501, DukeMTMC-reID and CUHK03, respectively.

References

  • [1] Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. CVPR 2018.
  • [2] Bag of tricks and a strong baseline for deep person re-identification. CVPRW 2019.

Extendibility

Accompanied with our FineGPR, we also provide some human body masks (Middle) and keypoint locations (Bottom) of all characters during the annotation. We hope that our synthetic dataset FineGPR can not only contribute a lot to the development of generalizable person re-ID, but also advance the research of other computer vision tasks, such as human part segmentation and pose estimation.

FineGPR-C caption dataset

On the basis of FineGPR dafaset, we introduce a dynamic strategy to generate high-quality captions with fine-grained attribute annotations for semantic-based pretraining. To be more specific, we rearrange the different attributes as word embeddings into caption formula in the different position, and then generate semantically dense caption with high-quality description, which gives rise to our newly constructed FineGPR-C caption dataset.

A small subset of FineGPR-C caption dataset can be downloaded from the following links:

Citation

If you use our FineGPR dataset for your research, please cite our Paper.

@article{xiang2021less,
  title={Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification},
  author={Xiang, Suncheng and You, Guanjie and Guan, Mengyuan and Chen, Hao and Wang, Feng and Liu, Ting and Fu, Yuzhuo},
  journal={arXiv preprint arXiv:2109.10498},
  year={2021}
}

If you do think this FineGPR-C caption dataset is useful and have used it in your research, please cite our Paper.

@article{xiang2021vtbr,
  title={VTBR: Semantic-based Pretraining for Person Re-Identification},
  author={Xiang, Suncheng and Zhang, Zirui and Guan, Mengyuan and Chen, Hao and Yan, Binjie and Liu, Ting and Fu, Yuzhuo},
  journal={arXiv preprint arXiv:2110.05074},
  year={2021}
}

Ethical Considerations

Our task and dataset were created with careful attention to ethical questions, which we encountered throughout our work. Access to our dataset will be provided for research purposes only and with restrictions on redistribution. Additionally, as we filtered out the sensitive attribute name in our fine-grained attribute annotation, our dataset cannot be easily repurposed for unintended tasks. Importantly, we are very cautious of human-annotation procedure of large scale datasets towards the social and ethical implications. Furthermore, we do not consider the datasets for developing non-research systems without further processing or augmentation. We hope this fine-grained dataset will shed light into potential tasks for the research community to move forward.


LICENSE

  • The FineGPR Dataset and FineGPR-C caption is made available for non-commercial purposes only.
  • You will not, directly or indirectly, reproduce, use, or convey the FineGPR dataset and FineGPR-C caption dataset or any Content, or any work product or data derived therefrom, for commercial purposes.

Permissions of this strong copyleft license (GNU General Public License v3.0) are conditioned on making available complete source code of licensed works and modifications, which include larger works using a licensed work, under the same license. Copyright and license notices must be preserved. Contributors provide an express grant of patent rights.


Acknowledgements

This research was supported by the National Natural Science Foundation of China under Project (Grant No. 61977045). We would like to thank authors of FineGPR, and FineGPR-Caption dataset for their work. They provide tremendous efforts in these dataset to advance the research in this field. We also appreciate Zefang Yu, Mingye Xie and Guanjie You for insightful feedback and discussion.


For further questions and suggestions about our datasets and methods, please feel free to contact Suncheng Xiang: [email protected]

Owner
SunchengXiang
SunchengXiang
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
PyTorch implementation of the NIPS-17 paper "PoincarΓ© Embeddings for Learning Hierarchical Representations"

PoincarΓ© Embeddings for Learning Hierarchical Representations PyTorch implementation of PoincarΓ© Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 25, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty β’Έβ“„β“‹β’Ύβ’Ή-①⑨ (MyFirstCTF Only) Reverse Baby β˜… Piano Reverse C#, .NET β˜…

6 Oct 28, 2021
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyα»…n Trường LΓ’u 2 Dec 27, 2021
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

εŒ—ζ΅·θ‹₯ 3 Dec 17, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022