Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Related tags

Deep LearningFineGPR
Overview

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Suncheng Xiang

Shanghai Jiao Tong University

Overview

In this paper, we construct and label a large-scale synthetic person dataset named FineGPR with fine-grained attribute distribution. Moreover, aiming to fully exploit the potential of FineGPR and promote the efficient training from millions of synthetic data, we propose an attribute analysis pipeline AOST to learn attribute distribution in target domain, then apply style transfer network to eliminate the gap between synthetic and real-world data and thus is freely deployed to new scenarios. Experiments conducted on benchmarks demonstrate that FineGPR with AOST outperforms (or is on par with) existing real and synthetic datasets, which suggests its feasibility for re-ID and proves the proverbial less-is-more principle. We hope this fine-grained dataset could advance research towards re-ID in real scenarios.


[Paper] [Video Sample] [Related Project]


πŸ”₯ NEWS πŸ”₯

  • [10/2021] πŸ“£ The first FineGPR-C caption dataset involving human describing event is coming !

  • [09/2021] πŸ“£ The large-scale synthetic person dataset FineGPR with fine-grained attribute distribution is released !


Table of Contents πŸ‘€


FineGPR Introduction

The FineGPR dataset is generated by a popular GTA5 game engine that can synthesise images under controllable viewpoints, weathers,illuminations and backgrounds, as well as 13 fine-grained attributes at the identity level πŸ‘ .

Our FineGPR dataset provides fine-grained and accurately configurable annotations, including 36 different viewpoints, 7 different kinds of weathers, 7 different kinds of illuminations, and 9 different kinds of backgrounds.

Viewpoint πŸ“·

Definition of different viewpoints. Viewpoints of one identity are sampled at an interval of 10Β°, e.g. 0Β°-80Β° denotes that a person has 9 different angles in total.

Weather 🌨 and Illumination πŸŽ‡

The exemplars of different weather distribution (left) and illumination distribution (right) from the proposed FineGPR dataset.

Attributes at the Identity Level ⛹️‍♀️

The distributions of attributes at the identity level on FineGPR. The left figure shows the numbers of IDs for each attribute. The middle and right pies illustrate the distribution of the colors of upper-body and low-body clothes respectively.

Some visual exemplars with ID-level pedestrian attributes in the proposed FineGPR dataset, such as Wear short sleeve , Wear dress, Wear hat, Carry bag, etc.


Comparison with existing datasets

Some Mainstream Datasets for Person Re-Identification

For related FineGPR dataset (details of the previous related work, please refer to the our homepage GPR πŸ”Ž :

dataset IDs (ID-Attributes) boxs cams weathers illumination scene resolution
Market-1501 1,501 ( βœ”οΈ ) 32,668 6 - - - low
CUHK03 1,467 ( ❌ ) 14,096 2 - - - low
DukeMTMC-reID 1,404 ( βœ”οΈ ) 36,411 8 - - - low
MSMT17 4,101 ( ❌ ) 126,441 15 - - - vary
SOMAset 50 ( ❌ ) 100,000 250 - - - -
SyRI 100 ( ❌ ) 1,680,000 100 - 140 - -
PersonX 1,266 ( ❌ ) 273,456 6 - - 1 vary
Unreal 3,000 ( ❌ ) 120,000 34 - - 1 low
RandPerson 8,000 ( ❌ ) 1,801,816 19 - - 4 low
FineGPR 1150 ( βœ”οΈ ) 2,028,600 36 7 7 9 high

Link of the Dataset

Data of FineGPR for Viewpoint Analysis

A small subset of FineGPR can be downloaded from the following links:

Directories & Files of images

FineGPR_Dataset 
β”œβ”€β”€ FineGPR/   # This file is our original dataset, we provide the samples of ID=0001 and ID=0003 in this file folder.
β”‚   β”œβ”€β”€ 0001
β”‚   β”‚   β”œβ”€β”€ 0001_c01_w01_l01_p01.jpg 
β”‚   β”‚	β”œβ”€β”€ 0001_c01_w01_l02_p01.jpg  
β”‚   β”‚   β”œβ”€β”€ 0001_c01_w01_l03_p01.jpg
β”‚   β”‚   └── ...
β”‚   β”œβ”€β”€ 0003/
β”‚   β”‚   β”œβ”€β”€ 0003_c01_w01_l01_p06.jpg  
β”‚   β”‚   β”œβ”€β”€ 0003_c01_w01_l02_p06.jpg
β”‚   β”‚   β”œβ”€β”€ 0003_c01_w01_l03_p06.jpg	   
β”‚   β”‚   └── ...
β”‚   └── ...
β”œβ”€β”€ FineGPR_subset   # This file is the subset of FineGPR dataset, each Identity contains 4 images. 
β”‚   β”œβ”€β”€ 0001_c01_w03_l05_p03.jpg 
β”‚   β”œβ”€β”€ 0001_c10_w03_l05_p03.jpg
β”‚   β”œβ”€β”€ 0001_c19_w03_l05_p03.jpg
β”‚   β”œβ”€β”€ 0001_c28_w03_l05_p03.jpg
β”‚   β”œβ”€β”€ 0003_c01_w03_l05_p08.jpg 
β”‚   β”œβ”€β”€ 0003_c10_w03_l05_p08.jpg
β”‚   β”œβ”€β”€ 0003_c19_w03_l05_p08.jpg
β”‚   β”œβ”€β”€ 0003_c28_w03_l05_p08.jpg  
β”‚   └── ...
└── README.md   # Readme file

Name of the image

Taking "0001_c01_w01_l01_p01.jpg" as an example:

  • 0001 is the id of the person
  • c01 is the id of the camera
  • w01 is the id of the weather
  • l01 is the id of the illumination
  • p01 is the id of the background

Viewpoint annotations

FineGPR
β”œβ”€β”€ c01:90Β°      β”œβ”€β”€ c10:180Β°      β”œβ”€β”€ c19:270Β°      β”œβ”€β”€ c28:0Β°
β”œβ”€β”€ c02:100Β°     β”œβ”€β”€ c11:190Β°      β”œβ”€β”€ c20:280Β°      β”œβ”€β”€ c29:10Β°
β”œβ”€β”€ c03:110Β°     β”œβ”€β”€ c12:200Β°      β”œβ”€β”€ c21:290Β°      β”œβ”€β”€ c30:20Β°
β”œβ”€β”€ c04:120Β°     β”œβ”€β”€ c13:210Β°      β”œβ”€β”€ c22:300Β°      β”œβ”€β”€ c31:30Β°
β”œβ”€β”€ c05:130Β°     β”œβ”€β”€ c14:220Β°      β”œβ”€β”€ c23:310Β°      β”œβ”€β”€ c32:40Β°
β”œβ”€β”€ c06:140Β°     β”œβ”€β”€ c15:230Β°      β”œβ”€β”€ c24:320Β°      β”œβ”€β”€ c33:50Β°
β”œβ”€β”€ c07:150Β°     β”œβ”€β”€ c16:240Β°      β”œβ”€β”€ c25:330Β°      β”œβ”€β”€ c34:60Β°
β”œβ”€β”€ c08:160Β°     β”œβ”€β”€ c17:250Β°      β”œβ”€β”€ c26:340Β°      β”œβ”€β”€ c35:70Β°
└── c09:170Β°     └── c18:260Β°      └── c27:350Β°      └── c36:80Β°

Weather annotations

FineGPR
β”œβ”€β”€ w01:Sunny
β”œβ”€β”€ w02:Clouds    
β”œβ”€β”€ w03:Overcast
β”œβ”€β”€ w04:Foggy   
β”œβ”€β”€ w05:Neutral
β”œβ”€β”€ w06:Blizzard 
└── w07:Snowlight 	   

Illumination annotations

FineGPR
β”œβ”€β”€ l01:Midnight
β”œβ”€β”€ l02:Dawn    
β”œβ”€β”€ l03:Forenoon
β”œβ”€β”€ l04:Noon   
β”œβ”€β”€ l05:Afternoon
β”œβ”€β”€ l06:Dusk 
└── l07:Night 	   

Scene annotations

FineGPR
β”œβ”€β”€ p01:Urban
β”œβ”€β”€ p02:Urban   
β”œβ”€β”€ p03:Wild
β”œβ”€β”€ p04:Urban   
β”œβ”€β”€ p05:Wild
β”œβ”€β”€ p06:Urban
β”œβ”€β”€ p07:Urban
β”œβ”€β”€ p08:Wild 
└── p09:Urban 	   

Method

πŸ’‘ The two-stage pipeline AOST to learn attribute distribution of target domain. Firstly, we learn attribute distribution of real domain on the basis of XGBoost & PSO learning system. Secondly, we perform style transfer to enhance the reality of optimal dataset. Finally, the transferred data are adopted for downstream re-ID task.


Results

Performance comparison with existing Real and Synthetic datasets on Market-1501, DukeMTMC-reID and CUHK03, respectively.

References

  • [1] Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. CVPR 2018.
  • [2] Bag of tricks and a strong baseline for deep person re-identification. CVPRW 2019.

Extendibility

Accompanied with our FineGPR, we also provide some human body masks (Middle) and keypoint locations (Bottom) of all characters during the annotation. We hope that our synthetic dataset FineGPR can not only contribute a lot to the development of generalizable person re-ID, but also advance the research of other computer vision tasks, such as human part segmentation and pose estimation.

FineGPR-C caption dataset

On the basis of FineGPR dafaset, we introduce a dynamic strategy to generate high-quality captions with fine-grained attribute annotations for semantic-based pretraining. To be more specific, we rearrange the different attributes as word embeddings into caption formula in the different position, and then generate semantically dense caption with high-quality description, which gives rise to our newly constructed FineGPR-C caption dataset.

A small subset of FineGPR-C caption dataset can be downloaded from the following links:

Citation

If you use our FineGPR dataset for your research, please cite our Paper.

@article{xiang2021less,
  title={Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification},
  author={Xiang, Suncheng and You, Guanjie and Guan, Mengyuan and Chen, Hao and Wang, Feng and Liu, Ting and Fu, Yuzhuo},
  journal={arXiv preprint arXiv:2109.10498},
  year={2021}
}

If you do think this FineGPR-C caption dataset is useful and have used it in your research, please cite our Paper.

@article{xiang2021vtbr,
  title={VTBR: Semantic-based Pretraining for Person Re-Identification},
  author={Xiang, Suncheng and Zhang, Zirui and Guan, Mengyuan and Chen, Hao and Yan, Binjie and Liu, Ting and Fu, Yuzhuo},
  journal={arXiv preprint arXiv:2110.05074},
  year={2021}
}

Ethical Considerations

Our task and dataset were created with careful attention to ethical questions, which we encountered throughout our work. Access to our dataset will be provided for research purposes only and with restrictions on redistribution. Additionally, as we filtered out the sensitive attribute name in our fine-grained attribute annotation, our dataset cannot be easily repurposed for unintended tasks. Importantly, we are very cautious of human-annotation procedure of large scale datasets towards the social and ethical implications. Furthermore, we do not consider the datasets for developing non-research systems without further processing or augmentation. We hope this fine-grained dataset will shed light into potential tasks for the research community to move forward.


LICENSE

  • The FineGPR Dataset and FineGPR-C caption is made available for non-commercial purposes only.
  • You will not, directly or indirectly, reproduce, use, or convey the FineGPR dataset and FineGPR-C caption dataset or any Content, or any work product or data derived therefrom, for commercial purposes.

Permissions of this strong copyleft license (GNU General Public License v3.0) are conditioned on making available complete source code of licensed works and modifications, which include larger works using a licensed work, under the same license. Copyright and license notices must be preserved. Contributors provide an express grant of patent rights.


Acknowledgements

This research was supported by the National Natural Science Foundation of China under Project (Grant No. 61977045). We would like to thank authors of FineGPR, and FineGPR-Caption dataset for their work. They provide tremendous efforts in these dataset to advance the research in this field. We also appreciate Zefang Yu, Mingye Xie and Guanjie You for insightful feedback and discussion.


For further questions and suggestions about our datasets and methods, please feel free to contact Suncheng Xiang: [email protected]

Owner
SunchengXiang
SunchengXiang
[제 13회 νˆ¬λΉ…μŠ€ 컨퍼런슀] OK Mugle! - μž₯λ₯΄λΆ€ν„° λ©œλ‘œλ””κΉŒμ§€, Content-based Music Recommendation

Ok Mugle! 🎡 μž₯λ₯΄λΆ€ν„° λ©œλ‘œλ””κΉŒμ§€, Content-based Music Recommendation 'Ok Mugle!'은 제13회 νˆ¬λΉ…μŠ€ 컨퍼런슀(2022.01.15)μ—μ„œ μ§„ν–‰ν•œ μŒμ•… μΆ”μ²œ ν”„λ‘œμ νŠΈμž…λ‹ˆλ‹€. Description πŸ“– λ³Έ ν”„λ‘œμ νŠΈμ—μ„œλŠ” Kakao

SeongBeomLEE 5 Oct 09, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
This repository contains the source codes for the paper AtlasNet V2 - Learning Elementary Structures.

AtlasNet V2 - Learning Elementary Structures This work was build upon Thibault Groueix's AtlasNet and 3D-CODED projects. (you might want to have a loo

ThΓ©o Deprelle 123 Nov 11, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022