An efficient framework for reinforcement learning.

Overview

rl: An efficient framework for reinforcement learning

Python

Requirements

name version
Python >=3.7
numpy >=1.19
torch >=1.7
tensorboard >=2.5
tensorboardX >=2.4
gym >=0.18.3

Make sure your Python environment is activated before installing following requirements.
pip install -U gym tensorboard tensorboardx

Introduction

Quick Start

CartPole-v0:
python demo.py
Enter the following commands in terminal to start training Pendulum-v0:
python demo.py --env_name Pendulum-v0 --target_reward -250.0
Use Recurrent Neural Network:
python demo.py --env_name Pendulum-v0 --target_reward -250.0 --use_rnn --log_dir Pendulum-v0_RNN
Open a new terminal:
tensorboard --logdir=result
Then you can access the training information by visiting http://localhost:6006/ in browser.

Structure

Proximal Policy Optimization

PPO is an on-policy and model-free reinforcement learning algorithm.

Components

  • Generalized Advantage Estimation (GAE)
  • Gate Recurrent Unit (GRU)

Hyperparameters

hyperparameter note value
env_num number of parallel processes 16
chunk_len BPTT for GRU 10
eps clipping parameter 0.2
gamma discount factor 0.99
gae_lambda trade-off between TD and MC 0.95
entropy_coef coefficient of entropy 0.05
ppo_epoch data usage 5
adv_norm normalized advantage 1 (True)
max_norm gradient clipping (L2) 20.0
weight_decay weight decay (L2) 1e-6
lr_actor learning rate of actor network 1e-3
lr_critic learning rate of critic network 1e-3

Test Environment

A simple test environment for verifying the effectiveness of this algorithm (of course, the algorithm can also be implemented by yourself).
Simple logic with less code.

Mechanism

The environment chooses one number randomly in every step, and returns the one-hot matrix.
If the action taken matches the number chosen in the last 3 steps, you will get a complete reward of 1.

>>> from env.test_env import TestEnv
>>> env = TestEnv()
>>> env.seed(0)
>>> env.reset()
array([1., 0., 0.], dtype=float32)
>>> env.step(9 * 0 + 3 * 0 + 1 * 0)
(array([0., 1., 0.], dtype=float32), 1.0, False, {'str': 'Completely correct.'})
>>> env.step(9 * 1 + 3 * 0 + 1 * 0)
(array([1., 0., 0.], dtype=float32), 1.0, False, {'str': 'Completely correct.'})
>>> env.step(9 * 0 + 3 * 1 + 1 * 0)
(array([0., 1., 0.], dtype=float32), 1.0, False, {'str': 'Completely correct.'})
>>> env.step(9 * 0 + 3 * 1 + 1 * 0)
(array([0., 1., 0.], dtype=float32), 0.0, False, {'str': 'Completely wrong.'})
>>> env.step(9 * 0 + 3 * 1 + 1 * 0)
(array([0., 0., 1.], dtype=float32), 0.6666666666666666, False, {'str': 'Partially correct.'})
>>> env.step(9 * 2 + 3 * 0 + 1 * 0)
(array([1., 0., 0.], dtype=float32), 0.3333333333333333, False, {'str': 'Partially correct.'})
>>> env.step(9 * 0 + 3 * 2 + 1 * 1)
(array([0., 0., 1.], dtype=float32), 1.0, False, {'str': 'Completely correct.'})
>>>

Convergence Reward

  • General RL algorithms will achieve an average reward of 55.5.
  • Because of the state memory unit, RNN based RL algorithms can reach the goal of 100.0.

2021, ICCD Lab, Dalian University of Technology. Author: Jingcheng Jiang.

As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022