Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Overview

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma.

We address the problem of estimating depth with multi modal audio visual data. Inspired by the ability of animals, such as bats and dolphins, to infer distance of objects with echolocation, we propose an end-to-end deep learning based pipeline utilizing RGB images, binaural echoes and estimated material properties of various objects within a scene for the task of depth estimation.

[Project] [Paper]

teaser

Requirements

The code is tesed with

- Python 3.6 
- PyTorch 1.6.0
- Numpy 1.19.5

Dataset

Replica-VisualEchoes can be obatined from here. We have used the 128x128 image resolution for our experiment.

MatterportEchoes is an extension of existing matterport3D dataset. In order to obtain the raw frames please forward the access request acceptance from the authors of matterport3D dataset. We will release the procedure to obtain the frames and echoes using habitat-sim and soundspaces in near future.

Pre-trained Model

We have provided pre-trained model for both the datasets here. For each of the dataset four different parts of the model are saved individually with name rgbdepth_*, audiodepth_*, material_*, attention_*, where * represents the name of the dataset, i.e. replica or mp3d.

Training

To train the model, first download the pre-trained material net from above link.

python train.py \
--validation_on \
--dataset mp3d \
--img_path path_to_img_folder \
--metadatapath path_to_metadata \
--audio_path path_to_audio_folder \
--checkpoints_dir path_to_save_checkpoints \
--init_material_weight path_to_pre-trained_material_net

Evaluation

To evaluate the method using the pre-trained model, download the models for the corresponding dataset and the dataset.

  • Evalution for Replica dataset
python test.py \
--img_path path_to_img_folder \
--audio_path path_to_audio_data \
--checkpoints_dir path_to_the_pretrained_model \
--dataset replica
  • Evaluation for Matterport3D dataset
python test.py \
--img_path path_to_img_folder \
--audio_path path_to_audio_data \
--checkpoints_dir path_to_the_pretrained_model \
--dataset mp3d

License and Citation

The usage of this software is under MIT License.

@inproceedings{parida2021beyond,
  title={Beyond Image to Depth: Improving Depth Prediction using Echoes},
  author={Parida, Kranti and Srivastava, Siddharth and Sharma, Gaurav},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  year={2021}
}

Acknowledgement

Some portion of the code are adapted from Ruohan Gao. Thanks Ruohan!

Owner
Kranti Kumar Parida
Kranti Kumar Parida
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., de

Jie Huang 14 Oct 21, 2022
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022