Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Overview

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification

We provide the codes for reproducing result of our paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Installation

  1. Basic environments: python3.6, pytorch1.8.0, cuda11.1.

  2. Our codes structure is based on Torchreid. (More details can be found in link: https://github.com/KaiyangZhou/deep-person-reid , you can download the packages according to Torchreid requirements.)

# create environment
cd AAAI2022_IEEE/
conda create --name ieeeReid python=3.6
conda activate ieeeReid

# install dependencies
# make sure `which python` and `which pip` point to the correct path
pip install -r requirements.txt

# install torch and torchvision (select the proper cuda version to suit your machine)
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge

# install torchreid (don't need to re-build it if you modify the source code)
python setup.py develop

Get start

  1. You can use the setting in im_r50_softmax_256x128_amsgrad_RGBNT_ieee_part_margin.yaml to get the results of full IEEE.

    python ./scripts/mainMultiModal.py --config-file ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_ieee_part_margin.yaml --seed 40
  2. You can run other methods by using following configuration file:

    # MLFN
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_mlfn.yaml
    
    # HACNN
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_hacnn.yaml
    
    # OSNet
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_osnet.yaml
    
    # HAMNet
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_hamnet.yaml
    
    # PFNet
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_hamnet.yaml
    
    # full IEEE
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_ieee_part_margin.yaml

Details

  1. The details of our Cross-modal Interacting Module (CIM) and Relation-based Embedding Module (REM) can be found in .\torchreid\models\ieee3modalPart.py. The design of Multi-modal Margin Loss(3M loss) can be found in .\torchreid\losses\multi_modal_margin_loss_new.py.

  2. Ablation study settings.

    You can control these two modules and the loss by change the corresponding codes.

    1. Cross-modal Interacting Module (CIM) and Relation-based Embedding Module (REM)
    # change the code in .\torchreid\models\ieee3modalPart.py
    
    class IEEE3modalPart(nn.Module):
        def __init__(···
        ):
            modal_number = 3
            fc_dims = [128]
            pooling_dims = 768
            super(IEEE3modalPart, self).__init__()
            self.loss = loss
            self.parts = 6
            
            self.backbone = nn.ModuleList(···
            )
    		
    		  # using Cross-modal Interacting Module (CIM)
            self.interaction = True
            # using channel attention in CIM
            self.attention = True
            
            # using Relation-based Embedding Module (REM)
            self.using_REM = True
            
            ···
    1. Multi-modal Margin Loss(3M loss)
    # change the code in .\configs\your_config_file.yaml
    
    # using Multi-modal Margin Loss(3M loss), you can change the margin by modify the parameter of "ieee_margin".
    ···
    loss:
      name: 'margin'
      softmax:
        label_smooth: True
      ieee_margin: 1
      weight_m: 1.0
      weight_x: 1.0
    ···
    
    # using only CE loss
    ···
    loss:
      name: 'softmax'
      softmax:
        label_smooth: True
      weight_x: 1.0
    ···
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022)

A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution (CVPR2022) https://arxiv.org/abs/2203.09388 Jianqi Ma, Zheto

MA Jianqi, shiki 104 Jan 05, 2023
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022