Bonsai: Gradient Boosted Trees + Bayesian Optimization

Overview

Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

Despite being a very small package, it has access to nearly all of the configurable parameters in XGBoost and CatBoost as well as the BayesianOptimization package allowing users to specify unique objectives, metrics, parameter search ranges, and search policies. This is made possible thanks to the strong similarities between both libraries.

$ pip install bonsai-tree

References/Dependencies:

Why use Bonsai?

Grid search and random search are the most commonly used algorithms for exploring the hyperparameter space for a wide range of machine learning models. While effective for optimizing over low dimensional hyperparameter spaces (ex: few regularization terms), these methods do not scale well to models with a large number of hyperparameters such as gradient boosted trees.

Bayesian optimization on the other hand dynamically samples from the hyperparameter space with the goal of minimizing uncertaintly about the underlying objective function. For the case of model optimization, this consists of iteratively building a prior distribution of functions over the hyperparameter space and sampling with the goal of minimizing the posterior variance of the loss surface (via Gaussian Processes).

Model Configuration

Since Bonsai is simply a wrapper for both XGBoost and CatBoost, the model_params dict is synonymous with the params argument for both catboost.fit() and xgboost.fit(). Additionally, you must encode your categorical features as usual depending on which library you are using (XGB: One-Hot, CB: Label).

Below is a simple example of binary classification using CatBoost:

# label encoded training data
X = train.drop(target, axis = 1)
y = train[target]

# same args as catboost.train(...)
model_params = dict(objective = 'Logloss', verbose = False)

# same args as catboost.cv(...)
cv_params = dict(nfold = 5)

The pbounds dict as seen below specifies the hyperparameter bounds over which the optimizer will search. Additionally, the opt_config dictionary is for configuring the optimizer itself. Refer to the BayesianOptimization documentation to learn more.

# defining parameter search ranges
pbounds = dict(
  eta = (0.15, 0.4), 
  n_estimators = (200,2000), 
  max_depth = (4, 8)
)

# 10 warm up samples + 10 optimizing steps
n_iter, init_points= 10, 10

# to learn more about customizing your search policy:
# BayesianOptimization/examples/exploitation_vs_exploration.ipynb
opt_config = dict(acq = 'ei', xi = 1e-2)

Tuning and Prediction

All that is left is to initialize and optimize.

from bonsai.tune import CB_Tuner

# note that 'cats' is a list of categorical feature names
tuner = CB_Tuner(X, y, cats, model_params, cv_params, pbounds)
tuner.optimize(n_iter, init_points, opt_config, bounds_transformer)

After the optimal parameters are found, the model is trained and stored internally giving full access to the CatBoost model.

test_pool = catboost.Pool(test, cat_features = cats)
preds = tuner.model.predict(test_pool, prediction_type = 'Probability')

Bonsai also comes with a parallel coordinates plotting functionality allowing users to further narrow down their parameter search ranges as needed.

from bonsai.utils import parallel_coordinates

# DataFrame with hyperparams and observed loss
results = tuner.opt_results
parallel_coordinates(results)

Owner
Landon Buechner
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
We have a dataset of user performances. The project is to develop a machine learning model that will predict the salaries of baseball players.

Salary-Prediction-with-Machine-Learning 1. Business Problem Can a machine learning project be implemented to estimate the salaries of baseball players

Ayşe Nur Türkaslan 9 Oct 14, 2022
Pydantic based mock data generation

This library offers powerful mock data generation capabilities for pydantic based models. It can also be used with other libraries that use pydantic as a foundation, for example SQLModel, Beanie and

Na'aman Hirschfeld 396 Dec 28, 2022
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

42 Dec 23, 2022
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft 366 Jan 03, 2023
Implementation of K-Nearest Neighbors Algorithm Using PySpark

KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:

Zachary Petroff 4 Dec 30, 2022
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023
AutoX是一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色、简单易用、通用、自动化、灵活。

English | 简体中文 AutoX是什么? AutoX一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色: AutoX在多个kaggle数据集上,效果显著优于其他解决方案(见效果对比)。 简单易用: AutoX的接口和sklearn类似,方便上手使用。

4Paradigm 431 Dec 28, 2022
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.2k Jan 02, 2023
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023