A comprehensive repository containing 30+ notebooks on learning machine learning!

Overview

A Complete Machine Learning Package


Techniques, tools, best practices and everything you need to to learn machine learning!

toolss

This is a comprehensive repository containing 30+ notebooks on Python programming, data manipulation, data analysis, data visualization, data cleaning, classical machine learning, Computer Vision and Natural Language Processing(NLP).

All notebooks were created with the readers in mind. Every notebook starts with a high-level overview of any specific algorithm/concepts being covered. Wherever possible, visuals are used to make things clear.

Viewing and Running the Notebooks

The easiest way to view all the notebooks is to use Nbviewer.

  • Render nbviewer

If you want to play with the codes, you can use the following platforms:

  • Open In Colab

  • Launch in Deepnote

Deepnote will direct you to Intro to Machine Learning. Heads to the project side bar for more notebooks.

Tools Overview

The following are the tools that are covered in the notebooks. They are popular tools that machine learning engineers and data scientists need in one way or another and day to day.

  • Python is a high level programming language that has got a lot of popularity in the data community and with the rapid growth of the libraries and frameworks, this is a right programming language to do ML.

  • NumPy is a scientific computing tool used for array or matrix operations.

  • Pandas is a great and simple tool for analyzing and manipulating data from a variety of different sources.

  • Matplotlib is a comprehensive data visualization tool used to create static, animated, and interactive visualizations in Python.

  • Seaborn is another data visualization tool built on top of Matplotlib which is pretty simple to use.

  • Scikit-Learn: Instead of building machine learning models from scratch, Scikit-Learn makes it easy to use classical models in a few lines of code. This tool is adapted by almost the whole of the ML community and industries, from the startups to the big techs.

  • TensorFlow and Keras for neural networks: TensorFlow is a popular deep learning framework used for building models suitable for different fields such as Computer Vision and Natural Language Processing. At its backend, it uses Keras which is a high level API for building neural networks easily. TensorFlow has gained a lot of popularity in the ML community due to its complete ecosystem made of wholesome tools including TensorBoard, TF Datasets, TensorFlow Lite, TensorFlow Extended, TensorFlow.js, etc...

Outline

Part 1 - Intro to Python and Working with Data

0 - Intro to Python for Machine Learning

1 - Data Computation With NumPy

  • Creating a NumPy Array
  • Selecting Data: Indexing and Slicing An Array
  • Performing Mathematical and other Basic Operations
  • Perform Basic Statistics
  • Manipulating Data

2 - Data Manipulation with Pandas

  • Basics of Pandas
    • Series and DataFrames
    • Data Indexing and Selection
    • Dealing with Missing data
    • Basic operations and Functions
    • Aggregation Methods
    • Groupby
    • Merging, Joining and Concatenate
  • Beyond Dataframes: Working with CSV, and Excel
  • Real World Exploratory Data Analysis (EDA)

3 - Data Visualization with Matplotlib and Seaborn

4 - Real World Data - Exploratory Analysis and Data Preparation

Part 2 - Machine Learning

5 - Intro to Machine Learning

  • Intro to Machine Learning
  • Machine Learning Workflow
  • Evaluation Metrics
  • Handling Underfitting and Overfitting

6 - Classical Machine Learning with Scikit-Learn

Part 3 - Deep Learning

7 - Intro to Artificial Neural Networks and TensorFlow

8 - Deep Computer Vision with TensorFlow

9 - Natural Language Processing with TensorFlow

Used Datasets

Many of the datasets used for this repository are from the following sources:

Further Resources

Machine Learning community is very vibrant. There are many faboulous learning resources, some of which are paid or free available. Here is a list of courses that has got high community ratings. They are not listed in an order they are to be taken.

Courses

  • Machine Learning by Coursera: This course was tought by Andrew Ng. It is one of the most popular machine learning courses, it has been taken by over 4M of people. The course focuses more about the fundamentals of machine learning techniques and algorithms. It is free on Coursera.

  • Deep Learning Specialization: Also tought by Andrew Ng., Deep Learning Specialization is also a foundations based course. It teaches a decent foundations of major deep learning architectures such as convolutional neural networks and recurrent neural networks. The full course can be audited on Coursera, or watch freely on Youtube.

  • MIT Intro to Deep Learning: This course provide the foundations of deep learning in resonably short period of time. Each lecture is one hour or less, but the materials are still the best in classs. Check the course page here, and lecture videos here.

  • CS231N: Convolutional Neural Networks for Visual Recognition by Stanford: CS231N is one of the best deep learning and computer vision courses. The 2017 version was taught by Fei-Fei Li, Justin Johnson and Serena Yeung. The 2016 version was taught by Fei-Fei, Johnson and Andrej Karpathy. See 2017 lecture videos here, and other materials here.

  • Practical Deep Learning for Coders by fast.ai: This is also an intensive deep learning course pretty much the whole spectrum of deep learning architectures and techniques. The lecture videos and other resources such as notebooks on the course page.

  • Full Stack Deep Learning: While the majority of machine learning courses focuses on modelling, this course focuses on shipping machine learning systems. It teaches how to design machine learning projects, data management(storage, access, processing, versioning, and labeling), training, debugging, and deploying machine learning models. See 2021 version here and 2019 here. You can also skim through the project showcases to see the kind of the courses outcomes through learners projects.

  • NYU Deep Learning Spring 2021: Taught at NYU by Yann LeCun, Alfredo Canziani, this course is one of the most creative courses out there. The materials are presented in amazing way. Check the lecture videos here, and the course repo here.

  • CS224N: Natural Language Processing with Deep Learning by Stanford: If you are interested in Natural Language Processing, this is a great course to take. It is taught by Christopher Manning, one of the world class NLP stars. See the lecture videos here.

Books

Below is of the most awesome machine learning books.

  • The Hundred-Page Machine Learning Book: Authored by Andriy Burkov, this is one of the shortest but concise and well written book that you will ever find on the internet. You can read the book for free here.

  • Machine Learning Engineering: Also authored by Andriy Burkov, this is another great machine learning book that uncover each step of machine learning workflow, from data collection, preparation....to model serving and maintenance. The book is also free here.

  • Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Authored by Aurelion Geron, this is one of the best machine learning books. It is clearly written and full of ideas and best practices. You can ge the book here, or see its repository here.

  • Deep Learning: Authored by 3 deep learning legends, Ian Goodfellow and Yoshua Bengio and Aaron Courville, this is one of the great deep learning books that is freely available. You can get it here.

  • Deep Learning with Python: Authored by Francois Chollet, The Keras designer, this is a very comprehensive deep learning book. You can get the book here, and the book repo here.

  • Dive into Deep Learning: This is also a great deep learning book that is freely available. The book uses both PyTorch and TensorFlow. You can read the entire book here.

  • Neural Networks and Deep Learning: This is also another great deep learning online book by Michael Nielsen. You can read the entire book here.

If you are interested in more machine learning and deep learning resources, check this, this


This repository was created by Jean de Dieu Nyandwi. You can find him on:

If you find any of this thing helpful, shoot him a tweet or a mention :)

Owner
Jean de Dieu Nyandwi
Building machine learning systems!
Jean de Dieu Nyandwi
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
An open-source library of algorithms to analyse time series in GPU and CPU.

An open-source library of algorithms to analyse time series in GPU and CPU.

Shapelets 216 Dec 30, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 01, 2023
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
Book Item Based Collaborative Filtering

Book-Item-Based-Collaborative-Filtering Collaborative filtering methods are used

Şebnem 3 Jan 06, 2022
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
A basic Ray Tracer that exploits numpy arrays and functions to work fast.

Python-Fast-Raytracer A basic Ray Tracer that exploits numpy arrays and functions to work fast. The code is written keeping as much readability as pos

Rafael de la Fuente 393 Dec 27, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023