AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

Overview

AnimalAI 3

AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research towards unlocking cognitive capabilities and better understanding the space of possible minds. It is designed to facilitate testing across animals, humans, and AI.

This Repo

This repo contains the AnimalAI environment, some introductory python scripts for interacting with it, as well as the 900 tasks which were used in the original Animal-AI Olympics competition (and some others for demonstration purposes). Details of the tasks can be found on the AAI website where they can also be played and competition entries watched.

The environment is built using Unity ml-agents release 2.1.0-exp.1 (python version 0.27.0).

The AnimalAI environment and packages are currently only tested on linux (Ubuntu 20.04.2 LTS) with python 3.8 but have been reported working with python 3.6+, other linux distros and Windows and Mac.

The Unity Project for the environment is available here.

Installing

To get started you will need to:

  1. Clone this repo.
  2. Install the animalai python package and requirements by running pip install -e animalai from the root folder.
  3. Download the environment for your system:
OS Environment link
Linux v3.0
Mac v3.0
Windows v3.0

(Old v2.x versions can be found here)

Unzip the entire content of the archive to the (initially empty) env folder. On linux you may have to make the file executable by running chmod +x env/AnimalAI.x86_64. Note that the env folder should contain the AnimalAI.exe/.x86_84/.app depending on your system and any other folders in the same directory in the zip file.

Tutorials and Examples

Some example scripts to get started can be found in the examples folder. The following docs provide information for some common uses of the environment.

Manual Control

If you launch the environment directly from the executable or through the play.py script it will launch in player mode. Here you can control the agent with the following:

Keyboard Key Action
W move agent forwards
S move agent backwards
A turn agent left
D turn agent right
C switch camera
R reset environment

Citing

If you use the Animal-AI environment in your work you can cite the environment paper:

Crosby, M., Beyret, B., Shanahan, M., Hernández-Orallo, J., Cheke, L. & Halina, M.. (2020). The Animal-AI Testbed and Competition. Proceedings of the NeurIPS 2019 Competition and Demonstration Track, in Proceedings of Machine Learning Research 123:164-176 Available here.

 @InProceedings{pmlr-v123-crosby20a, 
    title = {The Animal-AI Testbed and Competition}, 
    author = {Crosby, Matthew and Beyret, Benjamin and Shanahan, Murray and Hern\'{a}ndez-Orallo, Jos\'{e} and Cheke, Lucy and Halina, Marta}, 
    booktitle = {Proceedings of the NeurIPS 2019 Competition and Demonstration Track}, 
    pages = {164--176}, 
    year = {2020}, 
    editor = {Hugo Jair Escalante and Raia Hadsell}, 
    volume = {123}, 
    series = {Proceedings of Machine Learning Research}, 
    month = {08--14 Dec}, 
    publisher = {PMLR}, 
} 

Unity ML-Agents

The Animal-AI Olympics was built using Unity's ML-Agents Toolkit.

Juliani, A., Berges, V., Vckay, E., Gao, Y., Henry, H., Mattar, M., Lange, D. (2018). Unity: A General Platform for Intelligent Agents. arXiv preprint arXiv:1809.02627

Further the documentation for mlagents should be consulted if you want to make any changes.

Version History

  • v3.0 Note that due to the changes to controls and graphics agents trained on previous versions might not preform the same
    • Updated agent handling. The agent now comes to a stop more quickly when not moving forwards or backwards and accelerates slightly faster.
    • Added new objects, spawners, signs, goal types (see doc)
    • Added 3 animal skins to the player character.
    • Updated graphics for many objects. Default shading on many previously plain objects make it easier to determine location(s)/velocity.
    • Many improvements to documentation and examples.
    • Upgraded to Mlagents 2.1.0-exp.1 (ml-agents python version 0.27.0)
    • Fixed various bugs.
  • v2.2.3
    • Now you can specify multiple different arenas in a single yml config file ant the environment will cycle through them each time it resets
  • v2.2.2
    • Low quality version with improved fps. (will work on further improvments to graphics & fps later)
  • v2.2.1
    • Improve UI scaling wrt. screen size
    • Fixed an issue with cardbox objects spawning at the wrong sizes
    • Fixed an issue where the environment would time out after the time period even when health > 0 (no longer intended behaviour)
    • Improved Death Zone shader for weird Zone sizes
  • v2.2.0 Health and Basic Scripts
    • Switched to health-based system (rewards remain the same).
    • Updated overlay in play mode.
    • Allow 3D hot zones and death zones and make them 3D by default in old configs.
    • Added rewards that grow/decay (currently not configurable but will be added in next update).
    • Added basic Gym Wrapper.
    • Added basic heuristic agent for benchmarking and testing.
    • Improved all other python scripts.
    • Fixed a reset environment bug when resetting during training.
    • Added the ability to set the DecisionPeriod (frameskip) when instantiating and environment.
  • v2.1.1 bugfix
    • Fixed raycast length being less then diagonal length of standard arena
  • v2.1 beta release
    • Upgraded to ML-Agents release 2 (0.26.0)
    • New features
      • Added raycast observations
      • Added agent global position to observations
Owner
Matthew Crosby
Matthew Crosby
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
Taming Transformers for High-Resolution Image Synthesis

Taming Transformers for High-Resolution Image Synthesis CVPR 2021 (Oral) Taming Transformers for High-Resolution Image Synthesis Patrick Esser*, Robin

CompVis Heidelberg 3.5k Jan 03, 2023
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
190 Jan 03, 2023
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022