CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

Related tags

Deep LearningCLUES
Overview

License: MIT

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

This repo contains the data and source code for baseline models in the NeurIPS 2021 benchmark paper for Constrained Language Understanding Evaluation Standard (CLUES) under MIT License.

Overview

The benchmark data is located in the data directory. We also release source codes for two fine-tuning strategies on CLUES, one with classic fine-tuning and the other with prompt-based fine-tuning.

Classic finetuning

Setup Environment

  1. > git clone [email protected]:microsoft/CLUES.git
  2. > git clone [email protected]:namisan/mt-dnn.git
  3. > cp -rf CLUES/classic_finetuning/ mt-dnn/
  4. > cd mt-dnn/

Run Experiments

  1. Preprocess data
    > bash run_clues_data_process.sh

  2. Train/test Models
    > bash run_clues_batch.sh

Prompt fine-tuning

Setup

  1. cd prompt_finetuning
  2. Run sh setup.sh to automatically fetch dependency codebase and apply our patch for CLUES

Run Experiments

All prompt-based funetuning baselines run commands are in experiments.sh, simple run by sh experiments.sh

Leaderboard

Here we maintain a leaderboard, allowing researchers to submit their results as entries.

Submission Instructions

  • Each submission must be submitted as a pull request modifying the markdown file underlying the leaderboard.
  • The submission must attach an accompanying public paper and public source code for reproducing their results on our dataset.
  • A submission can be toward any subset of tasks in our benchmark, or toward the aggregate leaderboard.
  • For any task targeted by the submission, we require evaluation on (1) 10, 20, and 30 shots, and (2) all 5 splits of the corresponding dataset and a report of their mean and standard deviation.
  • Each leaderboard will be sorted by the 30-shot mean S1 score (where S1 score is a variant of F1 score defined in our paper).
  • The submission should not use data from the 4 other splits during few-shot finetuning of any 1 split, either as extra training set or as validation set for hyperparameter tuning.
  • However, we allow external data, labeled or unlabeled, to be used for such purposes. Each submission using external data must mark the corresponding columns "external labeled" and/or "external unlabeled". Note, in this context, "external data" refers to data used after pretraining (e.g., for task-specific tuning); in particular, methods using existing pretrained models only, without extra data, should not mark either column. For obvious reasons, models cannot be trained on the original labeled datasets from where we sampled the few-shot CLUES data.
  • In the table entry, the submission should include a method name and a citation, hyperlinking to their publicly released source code reproducing the results. See the last entry of the table below for an example.

Abbreviations

  • FT = (classic) finetuning
  • PT = prompt based tuning
  • ICL = in-context learning, in the style of GPT-3
  • μ±σ = mean μ and standard deviation σ across our 5 splits. Aggregate standard deviation is calculated using the sum-of-variance formula from individual tasks' standard deviations.

Benchmarking CLUES for Aggregate 30-shot Evaluation

Shots (K=30) external labeled external unlabeled Average ▼ SST-2 MNLI CoNLL03 WikiANN SQuAD-v2 ReCoRD
Human N N 81.4 83.7 69.4 87.4 82.6 73.5 91.9
T5-Large-770M-FT N N 43.1±6.7 52.3±2.9 36.8±3.8 51.2±0.1 62.4±0.6 43.7±2.7 12±3.8
BERT-Large-336M-FT N N 42.1±7.8 55.4±2.5 33.3±1.4 51.3±0 62.5±0.6 35.3±6.4 14.9±3.4
BERT-Base-110M-FT N N 41.5±9.2 53.6±5.5 35.4±3.2 51.3±0 62.8±0 32.6±5.8 13.1±3.3
DeBERTa-Large-400M-FT N N 40.1±17.8 47.7±9.0 26.7±11 48.2±2.9 58.3±6.2 38.7±7.4 21.1±3.6
RoBERTa-Large-355M-FT N N 40.0±10.6 53.2±5.6 34.0±1.1 44.7±2.6 48.4±6.7 43.5±4.4 16±2.8
RoBERTa-Large-355M-PT N N 90.2±1.8 61.6±3.5
DeBERTa-Large-400M-PT N N 88.4±3.3 62.9±3.1
BERT-Large-336M-PT N N 82.7±4.1 45.3±2.0
GPT3-175B-ICL N N 91.0±1.6 33.2±0.2
BERT-Base-110M-PT N N 79.4±5.6 42.5±3.2
LiST (Wang et al.) N Y 91.3 ±0.7 67.9±3.0
Example (lastname et al.) Y/N Y/N 0±0 0±0 0±0 0±0 0±0 0±0 0±0

Individual Task Performance over Multiple Shots

SST-2

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
GPT-3 (175B) ICL N N 85.9±3.7 92.0±0.7 91.0±1.6 -
RoBERTa-Large PT N N 88.8±3.9 89.0±1.1 90.2±1.8 93.8
DeBERTa-Large PT N N 83.4±5.3 87.8±3.5 88.4±3.3 91.9
Human N N 79.8 83 83.7 -
BERT-Large PT N N 63.2±11.3 78.2±9.9 82.7±4.1 91
BERT-Base PT N N 63.9±10.0 76.7±6.6 79.4±5.6 91.9
BERT-Large FT N N 46.3±5.5 55.5±3.4 55.4±2.5 99.1
BERT-Base FT N N 46.2±5.6 54.0±2.8 53.6±5.5 98.1
RoBERTa-Large FT N N 38.4±21.7 52.3±5.6 53.2±5.6 98.6
T5-Large FT N N 51.2±1.8 53.4±3.2 52.3±2.9 97.6
DeBERTa-Large FT N N 43.0±11.9 40.8±22.6 47.7±9.0 100
Example (lastname et al.) Y/N Y/N 0±0 0±0 0±0 -

MNLI

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N Y 78.1 78.6 69.4 -
LiST (wang et al.) N N 60.5±8.3 67.2±4.5 67.9±3.0 -
DeBERTa-Large PT N N 44.5±8.2 60.7±5.3 62.9±3.1 88.1
RoBERTa-Large PT N N 57.7±3.6 58.6±2.9 61.6±3.5 87.1
BERT-Large PT N N 41.7±1.0 43.7±2.1 45.3±2.0 81.9
BERT-Base PT N N 40.4±1.8 42.1±4.4 42.5±3.2 81
T5-Large FT N N 39.8±3.3 37.9±4.3 36.8±3.8 85.9
BERT-Base FT N N 37.0±5.2 35.2±2.7 35.4±3.2 81.6
RoBERTa-Large FT N N 34.3±2.8 33.4±0.9 34.0±1.1 85.5
BERT-Large FT N N 33.7±0.4 28.2±14.8 33.3±1.4 80.9
GPT-3 (175B) ICL N N 33.5±0.7 33.1±0.3 33.2±0.2 -
DeBERTa-Large FT N N 27.4±14.1 33.6±2.5 26.7±11.0 87.6

CoNLL03

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 87.7 89.7 87.4 -
BERT-Base FT N N 51.3±0 51.3±0 51.3±0 -
BERT-Large FT N N 51.3±0 51.3±0 51.3±0 89.3
T5-Large FT N N 46.3±6.9 50.0±0.7 51.2±0.1 92.2
DeBERTa-Large FT N N 50.1±1.2 47.8±2.5 48.2±2.9 93.6
RoBERTa-Large FT N N 50.8±0.5 44.6±5.1 44.7±2.6 93.2

WikiANN

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 81.4 83.5 82.6 -
BERT-Base FT N N 62.8±0 62.8±0 62.8±0 88.8
BERT-Large FT N N 62.8±0 62.6±0.4 62.5±0.6 91
T5-Large FT N N 61.7±0.7 62.1±0.2 62.4±0.6 87.4
DeBERTa-Large FT N N 58.5±3.3 57.9±5.8 58.3±6.2 91.1
RoBERTa-Large FT N N 58.5±8.8 56.9±3.4 48.4±6.7 91.2

SQuAD v2

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 71.9 76.4 73.5 -
T5-Large FT N N 43.6±3.5 28.7±13.0 43.7±2.7 87.2
RoBERTa-Large FT N N 38.1±7.2 40.1±6.4 43.5±4.4 89.4
DeBERTa-Large FT N N 41.4±7.3 44.4±4.5 38.7±7.4 90
BERT-Large FT N N 42.3±5.6 35.8±9.7 35.3±6.4 81.8
BERT-Base FT N N 46.0±2.4 34.9±9.0 32.6±5.8 76.3

ReCoRD

Shots (K) external labeled external unlabeled 10 20 30 ▼ All
Human N N 94.1 94.2 91.9 -
DeBERTa-Large FT N N 15.7±5.0 16.8±5.7 21.1±3.6 80.7
RoBERTa-Large FT N N 12.0±1.9 9.9±6.2 16.0±2.8 80.3
BERT-Large FT N N 9.9±5.2 11.8±4.9 14.9±3.4 66
BERT-Base FT N N 10.3±1.8 11.7±2.4 13.1±3.3 54.4
T5-Large FT N N 11.9±2.7 11.7±1.5 12.0±3.8 77.3

How do I cite CLUES?

@article{cluesteam2021,
  title={Few-Shot Learning Evaluation in Natural Language Understanding},
  author={Mukherjee, Subhabrata and Liu, Xiaodong and Zheng, Guoqing and Hosseini, Saghar and Cheng, Hao and Yang, Greg and Meek, Christopher and Awadallah, Ahmed Hassan and Gao, Jianfeng},
  year={2021}
}

Acknowledgments

MT-DNN: https://github.com/namisan/mt-dnn
LM-BFF: https://github.com/princeton-nlp/LM-BFF

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022