Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

Overview

tf-SNDCGAN

Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publication/318572189_Spectral_Normalization_for_Generative_Adversarial_Networks, ICML 2017)

The implementation is based on the author's original code at: https://github.com/pfnet-research/chainer-gan-lib

This implementation works for tensorflow default data format "NHWC"

Spectral Normalization for Generative Adversarial Networks:

This method enforces Lipschitz-1 condition on the Discrminator of Wasserstein-GAN by normalizing its weight matrices with their own respective maximum singular value. This can be used together with Gradient Penalty in the paper "Improved Training of Wasserstein GAN".

The author uses a fast approximation method to compute the maximum singular value of weight matrices.

Quick run:

Keras is required for loading Cifar10 data set

python3 train.py

How to use spectral normalization:

# Import spectral norm wrapper
from libs.sn import spectral_normed_weight
# Create weight variable
W = tf.Variable(np.random.normal(size=[784, 10], scale=0.02), name='W', dtype=tf.float32)
# name of tf collection used for storing the update ops (u)
SPECTRAL_NORM_UPDATE_OPS = "spectral_norm_update_ops"
# call wrapping function, W_bar will be the spectral normed weight matrix
W_bar = spectral_normed_weight(W, num_iters=1, update_collection=SPECTRAL_NORM_UPDATE_OPS)
# Get the update ops
spectral_norm_update_ops = tf.get_collection(SPECTRAL_NORM_UPDATE_OPS)
...
# During training, run the update ops at the end of the iteration
for iter in range(max_iters):
    # Training goes here
    ...
    # Update ops at the end
    for update_op in spectral_norm_update_ops:
        sess.run(update_op)

For an example, see the file test_sn_implementation.py

Training curve:

Generated image samples on Cifar10:

Inception score:

After using in place batch norm update and use the optimal training parameters from the paper, I was able to match their claimed Inception score at 100k iteration: 7.4055686 +/- 0.087728456

The official github repostiory has an inception score of 7.41

Issues:

  • GPU under-utilization: The original implementation of the author in chainer uses 80%+ GPU most of the time. On an NVIDIA GTX 1080TI, their implementation run at nearly 3 iterations/s. This implementation use less than 50% GPU and run at less than 2 iterations/s. Solved. It was the global_step assignment that makes tensorflow create new assign node for graph each iteration, slow down the execution. This also made the graph become very large over time leading to gigantic event files. GPU utilization is now around 85+%

  • No Fréchet Inception Distance (https://arxiv.org/abs/1706.08500) evaluation yet.

Owner
Nhat M. Nguyen
Nhat M. Nguyen
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
FinEAS: Financial Embedding Analysis of Sentiment 📈

FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
😊 Python module for face feature changing

PyWarping Python module for face feature changing Installation pip install pywarping If you get an error: No such file or directory: 'cmake': 'cmake',

Dopevog 10 Sep 10, 2021
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

Leo 21 Nov 23, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022