Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

Overview

tf-SNDCGAN

Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publication/318572189_Spectral_Normalization_for_Generative_Adversarial_Networks, ICML 2017)

The implementation is based on the author's original code at: https://github.com/pfnet-research/chainer-gan-lib

This implementation works for tensorflow default data format "NHWC"

Spectral Normalization for Generative Adversarial Networks:

This method enforces Lipschitz-1 condition on the Discrminator of Wasserstein-GAN by normalizing its weight matrices with their own respective maximum singular value. This can be used together with Gradient Penalty in the paper "Improved Training of Wasserstein GAN".

The author uses a fast approximation method to compute the maximum singular value of weight matrices.

Quick run:

Keras is required for loading Cifar10 data set

python3 train.py

How to use spectral normalization:

# Import spectral norm wrapper
from libs.sn import spectral_normed_weight
# Create weight variable
W = tf.Variable(np.random.normal(size=[784, 10], scale=0.02), name='W', dtype=tf.float32)
# name of tf collection used for storing the update ops (u)
SPECTRAL_NORM_UPDATE_OPS = "spectral_norm_update_ops"
# call wrapping function, W_bar will be the spectral normed weight matrix
W_bar = spectral_normed_weight(W, num_iters=1, update_collection=SPECTRAL_NORM_UPDATE_OPS)
# Get the update ops
spectral_norm_update_ops = tf.get_collection(SPECTRAL_NORM_UPDATE_OPS)
...
# During training, run the update ops at the end of the iteration
for iter in range(max_iters):
    # Training goes here
    ...
    # Update ops at the end
    for update_op in spectral_norm_update_ops:
        sess.run(update_op)

For an example, see the file test_sn_implementation.py

Training curve:

Generated image samples on Cifar10:

Inception score:

After using in place batch norm update and use the optimal training parameters from the paper, I was able to match their claimed Inception score at 100k iteration: 7.4055686 +/- 0.087728456

The official github repostiory has an inception score of 7.41

Issues:

  • GPU under-utilization: The original implementation of the author in chainer uses 80%+ GPU most of the time. On an NVIDIA GTX 1080TI, their implementation run at nearly 3 iterations/s. This implementation use less than 50% GPU and run at less than 2 iterations/s. Solved. It was the global_step assignment that makes tensorflow create new assign node for graph each iteration, slow down the execution. This also made the graph become very large over time leading to gigantic event files. GPU utilization is now around 85+%

  • No Fréchet Inception Distance (https://arxiv.org/abs/1706.08500) evaluation yet.

Owner
Nhat M. Nguyen
Nhat M. Nguyen
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021