Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

Overview

MyTT

Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python library MyTT.py

Features

  • Innovative application of core tools function,so to writing indicator becomes easy and interesting!
  • Calculate technical indicators (Most of the indicators supported)
  • Produce graphs for any technical indicator
  • MyTT is very very fast! pure numpy and pandas implemented, not need install Ta-lib (talib)
  • MyTT is very simple,only use numpy and pandas even not "for in " in the code
  • Trading automation Quant Trade, Stock Market, Futures market or cryptocoin exchange like BTC
  • Chinese version MyTT Url: https://github.com/mpquant/MyTT
#  ----- 0 level:core tools function ---------

 def MA(S,N):                          
    return pd.Series(S).rolling(N).mean().values   

 def DIFF(S, N=1):         
    return pd.Series(S).diff(N)  
    
 def STD(S,N):              
    return  pd.Series(S).rolling(N).std(ddof=0).values

 def EMA(S,N):               # alpha=2/(span+1)    
    return pd.Series(S).ewm(span=N, adjust=False).mean().values  

 def SMA(S, N, M=1):        #   alpha=1/(1+com)
    return pd.Series(S).ewm(com=N-M, adjust=True).mean().values     

 def AVEDEV(S,N):          
    return pd.Series(S).rolling(N).apply(lambda x: (np.abs(x - x.mean())).mean()).values 

 def IF(S_BOOL,S_TRUE,S_FALSE):  
    return np.where(S_BOOL, S_TRUE, S_FALSE)

 def SUM(S, N):                   
    return pd.Series(S).rolling(N).sum().values if N>0 else pd.Series(S).cumsum()  

 def HHV(S,N):                   
    return pd.Series(S).rolling(N).max().values     

 def LLV(S,N):            
    return pd.Series(S).rolling(N).min().values    
#-----   1 level: Logic and Statistical function  (only use 0 level function to implemented) -----

def COUNT(S_BOOL, N):                  # COUNT(CLOSE>O, N): 
    return SUM(S_BOOL,N)    

def EVERY(S_BOOL, N):                  # EVERY(CLOSE>O, 5)  
    R=SUM(S_BOOL, N)
    return  IF(R==N, True, False)
  
def LAST(S_BOOL, A, B):                   
    if A<B: A=B                        #LAST(CLOSE>OPEN,5,3)  
    return S_BOOL[-A:-B].sum()==(A-B)    

def EXIST(S_BOOL, N=5):                # EXIST(CLOSE>3010, N=5) 
    R=SUM(S_BOOL,N)    
    return IF(R>0, True ,False)

def BARSLAST(S_BOOL):                  
    M=np.argwhere(S_BOOL);             # BARSLAST(CLOSE/REF(CLOSE)>=1.1) 
    return len(S_BOOL)-int(M[-1])-1  if M.size>0 else -1

def FORCAST(S,N):                      
    K,Y=SLOPE(S,N,RS=True)
    return Y[-1]+K
  
def CROSS(S1,S2):                      # GoldCross CROSS(MA(C,5),MA(C,10))  
    CROSS_BOOL=IF(S1>S2, True ,False)  # DieCross CROSS(MA(C,10),MA(C,5))
    return (COUNT(CROSS_BOOL>0,2)==1)*CROSS_BOOL
# ------ Technical Indicators  ( 2 level only use 0,1 level functions to implemented) --------------

def MACD(CLOSE,SHORT=12,LONG=26,M=9):             
    DIF = EMA(CLOSE,SHORT)-EMA(CLOSE,LONG);  
    DEA = EMA(DIF,M);      MACD=(DIF-DEA)*2
    return DIF,DEA,MACD

def KDJ(CLOSE,HIGH,LOW, N=9,M1=3,M2=3):          
    RSV = (CLOSE - LLV(LOW, N)) / (HHV(HIGH, N) - LLV(LOW, N)) * 100
    K = EMA(RSV, (M1*2-1));    D = EMA(K,(M2*2-1));        J=K*3-D*2
    return K, D, J

def RSI(CLOSE, N=24):                          
    DIF = CLOSE-REF(CLOSE,1) 
    return (SMA(MAX(DIF,0), N) / SMA(ABS(DIF), N) * 100)  

def WR(CLOSE, HIGH, LOW, N=10, N1=6):           
    WR = (HHV(HIGH, N) - CLOSE) / (HHV(HIGH, N) - LLV(LOW, N)) * 100
    WR1 = (HHV(HIGH, N1) - CLOSE) / (HHV(HIGH, N1) - LLV(LOW, N1)) * 100
    return WR, WR1

def BIAS(CLOSE,L1=6, L2=12, L3=24):             
    BIAS1 = (CLOSE - MA(CLOSE, L1)) / MA(CLOSE, L1) * 100
    BIAS2 = (CLOSE - MA(CLOSE, L2)) / MA(CLOSE, L2) * 100
    BIAS3 = (CLOSE - MA(CLOSE, L3)) / MA(CLOSE, L3) * 100
    return BIAS1, BIAS2, BIAS3

def BOLL(CLOSE,N=20, P=2):                          
    MID = MA(CLOSE, N); 
    UPPER = MID + STD(CLOSE, N) * P
    LOWER = MID - STD(CLOSE, N) * P
    return UPPER, MID, LOWER

def PSY(CLOSE,N=12, M=6):  
    PSY=COUNT(CLOSE>REF(CLOSE,1),N)/N*100
    PSYMA=MA(PSY,M)
    return PSY,PSYMA

def CCI(CLOSE,HIGH,LOW,N=14):  
    TP=(HIGH+LOW+CLOSE)/3
    return (TP-MA(TP,N))/(0.015*AVEDEV(TP,N))
        
def ATR(CLOSE,HIGH,LOW, N=20):                    
    TR = MAX(MAX((HIGH - LOW), ABS(REF(CLOSE, 1) - HIGH)), ABS(REF(CLOSE, 1) - LOW))
    return MA(TR, N)

def BBI(CLOSE,M1=3,M2=6,M3=12,M4=20):             
    return (MA(CLOSE,M1)+MA(CLOSE,M2)+MA(CLOSE,M3)+MA(CLOSE,M4))/4    

def DMI(CLOSE,HIGH,LOW,M1=14,M2=6):               
    TR = SUM(MAX(MAX(HIGH - LOW, ABS(HIGH - REF(CLOSE, 1))), ABS(LOW - REF(CLOSE, 1))), M1)
    HD = HIGH - REF(HIGH, 1);     LD = REF(LOW, 1) - LOW
    DMP = SUM(IF((HD > 0) & (HD > LD), HD, 0), M1)
    DMM = SUM(IF((LD > 0) & (LD > HD), LD, 0), M1)
    PDI = DMP * 100 / TR;         MDI = DMM * 100 / TR
    ADX = MA(ABS(MDI - PDI) / (PDI + MDI) * 100, M2)
    ADXR = (ADX + REF(ADX, M2)) / 2
    return PDI, MDI, ADX, ADXR  

  
def TRIX(CLOSE,M1=12, M2=20):                      
    TR = EMA(EMA(EMA(CLOSE, M1), M1), M1)
    TRIX = (TR - REF(TR, 1)) / REF(TR, 1) * 100
    TRMA = MA(TRIX, M2)
    return TRIX, TRMA

def VR(CLOSE,VOL,M1=26):                            
    LC = REF(CLOSE, 1)
    return SUM(IF(CLOSE > LC, VOL, 0), M1) / SUM(IF(CLOSE <= LC, VOL, 0), M1) * 100

def EMV(HIGH,LOW,VOL,N=14,M=9):                     
    VOLUME=MA(VOL,N)/VOL;       MID=100*(HIGH+LOW-REF(HIGH+LOW,1))/(HIGH+LOW)
    EMV=MA(MID*VOLUME*(HIGH-LOW)/MA(HIGH-LOW,N),N);    MAEMV=MA(EMV,M)
    return EMV,MAEMV

def DMA(CLOSE,N1=10,N2=50,M=10):                     
    DIF=MA(CLOSE,N1)-MA(CLOSE,N2);    DIFMA=MA(DIF,M)
    return DIF,DIFMA

def MTM(CLOSE,N=12,M=6):                             
    MTM=CLOSE-REF(CLOSE,N);         MTMMA=MA(MTM,M)
    return MTM,MTMMA

 
def EXPMA(CLOSE,N1=12,N2=50):                       
    return EMA(CLOSE,N1),EMA(CLOSE,N2);

def OBV(CLOSE,VOL):                                 
    return SUM(IF(CLOSE>REF(CLOSE,1),VOL,IF(CLOSE<REF(CLOSE,1),-VOL,0)),0)/10000

Usage Example

from  hb_hq_api import *         #  btc day data on Huobi cryptocoin exchange 
from  MyTT import *              #  to import lib

df=get_price('btc.usdt',count=120,frequency='1d');     #'1d'=1day , '4h'=4hour

#-----------df view-------------------------------------------
open close high low vol
2021-05-16 48983.62 47738.24 49800.00 46500.0 1.333333e+09
2021-05-17 47738.24 43342.50 48098.66 42118.0 3.353662e+09
2021-05-18 43342.50 44093.24 45781.52 42106.0 1.793267e+09
CLOSE=df.close.values     #or  CLOSE=list(df.close)
OPEN =df.open.values           
HIGH =df.high.values    
LOW = df.low.values            

MA5=MA(CLOSE,5)                                       
MA10=MA(CLOSE,10)                                     

RSI12=RSI(CLOSE,12)
CCI12=CCI(CLOSE,12)
ATR20=ATR(CLOSE,HIGH,LOW, N=20)

print('BTC5 MA5', MA5[-1] )                         
print('BTC MA10,RET(MA10))                         # RET(MA10) == MA10[-1]
print('today ma5 coross ma10? ',RET(CROSS(MA5,MA10)))
print('every close price> ma10? ',EVERY(CLOSE>MA10,5) )

BOLL and graphs

up,mid,lower=BOLL(CLOSE)                                       

plt.figure(figsize=(15,8))  
plt.plot(CLOSE,label='shanghai');
plt.plot(up,label='up');        
plt.plot(mid,label='mid'); 
plt.plot(lower,label='lower');
Boll

python lib need to install

  • pandas numpy

Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Time Dependent DFT in Tamm-Dancoff Approximation

Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff

Peter Borthwick 2 Nov 17, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022