Neural Articulated Radiance Field

Related tags

Deep LearningNARF
Overview

Neural Articulated Radiance Field

NARF

Neural Articulated Radiance Field
Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada
ICCV 2021

[Paper] [Code]

Abstract

We present Neural Articulated Radiance Field (NARF), a novel deformable 3D representation for articulated objects learned from images. While recent advances in 3D implicit representation have made it possible to learn models of complex objects, learning pose-controllable representations of articulated objects remains a challenge, as current methods require 3D shape supervision and are unable to render appearance. In formulating an implicit representation of 3D articulated objects, our method considers only the rigid transformation of the most relevant object part in solving for the radiance field at each 3D location. In this way, the proposed method represents pose-dependent changes without significantly increasing the computational complexity. NARF is fully differentiable and can be trained from images with pose annotations. Moreover, through the use of an autoencoder, it can learn appearance variations over multiple instances of an object class. Experiments show that the proposed method is efficient and can generalize well to novel poses.

Method

We extend Neural Radiance Fields (NeRF) to articulated objects. NARF is a NeRF conditioned on skeletal parameters and skeletal posture, and is an MLP that outputs the density and color of a point with 3D position and 2D viewing direction as input. Since articulated objects can be regarded as multiple rigid bodies connected by joints, the following two assumptions can be made

  • The density of each part does not change in the coordinate system fixed to the part.
  • A point on the surface of the object belongs to only one of the parts.

Therefore, we transform the input 3D coordinates into local coordinates of each part and use them as input for the model. From the second hypothesis, we use selector MLP to select only one necessary coordinate and mask the others.

An overview of the model is shown in the figure.

overview

The model is trained with the L2 loss between the generated image and the ground truth image.

Results

The proposed NARF is capable of rendering images with explicit control of the viewpoint, bone pose, and bone parameters. These representations are disentangled and can be controlled independently.

Viewpoint change (seen in training)

Pose change (unseen in training)

Bone length change (unseen in training)

NARF generalizes well to unseen viewpoints during training.

Furthermore, NARF can render segmentation for each part by visualizing the output values of the selector.

NARF can learn appearance variations by combining it with an autoencoder. The video below visualizes the disentangled representations and segmentation masks learned by NARF autoencoder.

Code

Envirionment

python 3.7.*
pytorch >= 1.7.1
torchvision >= 0.8.2

pip install tensorboardx pyyaml opencv-python pandas ninja easydict tqdm scipy scikit-image

Dataset preparation

THUman

Please refer to https://github.com/nogu-atsu/NARF/tree/master/data/THUman

Your own dataset

Coming soon.

Training

  • Write config file like NARF/configs/THUman/results_wxl_20181008_wlz_3_M/NARF_D.yml. Do not change default.yml

    • out_root: root directory to save models
    • out: experiment name
    • data_root: directory the dataset is in
  • Run training specifying a config file

    CUDA_VISIBLE_DEVICES=0 python train.py --config NARF/configs/[your_config.yml] --num_workers 1

  • Distributed data parallel

    python train_ddp.py --config NARF/configs/[your_config.yml] --gpus 4 --num_workers 1

Validation

  • Single gpu

    python train.py --config NARF/configs/[your_config.yml] --num_workers 1 --validation --resume_latest

  • Multiple gpus

    python train_ddp.py --config NARF/configs/[your_config.yml] --gpus 4 --num_workers 1 --validation --resume_latest

  • The results are saved to val_metrics.json in the same directory as the snapshots.

Computational cost

python computational_cost.py --config NARF/configs/[your_config.yml]

Visualize results

  • Generate interpolation videos

    cd visualize
    python NARF_interpolation.py --config ../NARF/configs/[your_config.yml]
    

    The results are saved to the same directory as the snapshots. With the default settings, it takes 30 minutes on a V100 gpu to generate a 30-frame video

Acknowledgement

https://github.com/rosinality/stylegan2-pytorch
https://github.com/ZhengZerong/DeepHuman
https://smpl.is.tue.mpg.de/

BibTex

@inproceedings{2021narf,
  author    = {Noguchi, Atsuhiro and Sun, Xiao and Lin, Stephen and Harada, Tatsuya},
  title     = {Neural Articulated Radiance Field},
  booktitle = {International Conference on Computer Vision},
  year      = {2021},
}
Owner
Atsuhiro Noguchi
Atsuhiro Noguchi
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation

This repository contains the code accompanying the paper " FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation" Paper link: R

20 Jun 29, 2022
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022