Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Overview

Dataset Distillation by Matching Training Trajectories

Project Page | Paper


Teaser image

This repo contains code for training expert trajectories and distilling synthetic data from our Dataset Distillation by Matching Training Trajectories paper (CVPR 2022). Please see our project page for more results.

Dataset Distillation by Matching Training Trajectories
George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, Jun-Yan Zhu
CMU, MIT, UC Berkeley
CVPR 2022

The task of "Dataset Distillation" is to learn a small number of synthetic images such that a model trained on this set alone will have similar test performance as a model trained on the full real dataset.

Our method distills the synthetic dataset by directly optimizing the fake images to induce similar network training dynamics as the full, real dataset. We train "student" networks for many iterations on the synthetic data, measure the error in parameter space between the "student" and "expert" networks trained on real data, and back-propagate through all the student network updates to optimize the synthetic pixels.

Wearable ImageNet: Synthesizing Tileable Textures

Teaser image

Instead of treating our synthetic data as individual images, we can instead encourage every random crop (with circular padding) on a larger canvas of pixels to induce a good training trajectory. This results in class-based textures that are continuous around their edges.

Given these tileable textures, we can apply them to areas that require such properties, such as clothing patterns.

Visualizations made using FAB3D

Getting Started

First, download our repo:

git clone https://github.com/GeorgeCazenavette/mtt-distillation.git
cd mtt-distillation

For an express instillation, we include .yaml files.

If you have an RTX 30XX GPU (or newer), run

conda env create -f requirements_11_3.yaml

If you have an RTX 20XX GPU (or older), run

conda env create -f requirements_10_2.yaml

You can then activate your conda environment with

conda activate distillation
Quadro Users Take Note:

torch.nn.DataParallel seems to not work on Quadro A5000 GPUs, and this may extend to other Quadro cards.

If you experience indefinite hanging during training, try running the process with only 1 GPU by prepending CUDA_VISIBLE_DEVICES=0 to the command.

Generating Expert Trajectories

Before doing any distillation, you'll need to generate some expert trajectories using buffer.py

The following command will train 100 ConvNet models on CIFAR-100 with ZCA whitening for 50 epochs each:

python buffer.py --dataset=CIFAR100 --model=ConvNet --train_epochs=50 --num_experts=100 --zca --buffer_path={path_to_buffer_storage} --data_path={path_to_dataset}

We used 50 epochs with the default learning rate for all of our experts. Worse (but still interesting) results can be obtained faster through training fewer experts by changing --num_experts. Note that experts need only be trained once and can be re-used for multiple distillation experiments.

Distillation by Matching Training Trajectories

The following command will then use the buffers we just generated to distill CIFAR-100 down to just 1 image per class:

python distill.py --dataset=CIFAR100 --ipc=1 --syn_steps=20 --expert_epochs=3 --max_start_epoch=20 --zca --lr_img=1000 --lr_lr=1e-05 --lr_teacher=0.01 --buffer_path={path_to_buffer_storage} --data_path={path_to_dataset}

ImageNet

Our method can also distill subsets of ImageNet into low-support synthetic sets.

When generating expert trajectories with buffer.py or distilling the dataset with distill.py, you must designate a named subset of ImageNet with the --subset flag.

For example,

python distill.py --dataset=ImageNet --subset=imagefruit --model=ConvNetD5 --ipc=1 --res=128 --syn_steps=20 --expert_epochs=2 --max_start_epoch=10 --lr_img=1000 --lr_lr=1e-06 --lr_teacher=0.01 --buffer_path={path_to_buffer_storage} --data_path={path_to_dataset}

will distill the imagefruit subset (at 128x128 resolution) into the following 10 images

To register your own ImageNet subset, you can add it to the Config class at the top of utils.py.

Simply create a list with the desired class ID's and add it to the dictionary.

This gist contains a list of all 1k ImageNet classes and their corresponding numbers.

Texture Distillation

You can also use the same set of expert trajectories (except those using ZCA) to distill classes into toroidal textures by simply adding the --texture flag.

For example,

python distill.py --texture --dataset=ImageNet --subset=imagesquawk --model=ConvNetD5 --ipc=1 --res=256 --syn_steps=20 --expert_epochs=2 --max_start_epoch=10 --lr_img=1000 --lr_lr=1e-06 --lr_teacher=0.01 --buffer_path={path_to_buffer_storage} --data_path={path_to_dataset}

will distill the imagesquawk subset (at 256x256 resolution) into the following 10 textures

Acknowledgments

We would like to thank Alexander Li, Assaf Shocher, Gokul Swamy, Kangle Deng, Ruihan Gao, Nupur Kumari, Muyang Li, Gaurav Parmar, Chonghyuk Song, Sheng-Yu Wang, and Bingliang Zhang as well as Simon Lucey's Vision Group at the University of Adelaide for their valuable feedback. This work is supported, in part, by the NSF Graduate Research Fellowship under Grant No. DGE1745016 and grants from J.P. Morgan Chase, IBM, and SAP. Our code is adapted from https://github.com/VICO-UoE/DatasetCondensation

Related Work

  1. Tongzhou Wang et al. "Dataset Distillation", in arXiv preprint 2018
  2. Bo Zhao et al. "Dataset Condensation with Gradient Matching", in ICLR 2020
  3. Bo Zhao and Hakan Bilen. "Dataset Condensation with Differentiable Siamese Augmentation", in ICML 2021
  4. Timothy Nguyen et al. "Dataset Meta-Learning from Kernel Ridge-Regression", in ICLR 2021
  5. Timothy Nguyen et al. "Dataset Distillation with Infinitely Wide Convolutional Networks", in NeurIPS 2021
  6. Bo Zhao and Hakan Bilen. "Dataset Condensation with Distribution Matching", in arXiv preprint 2021
  7. Kai Wang et al. "CAFE: Learning to Condense Dataset by Aligning Features", in CVPR 2022

Reference

If you find our code useful for your research, please cite our paper.

@inproceedings{
cazenavette2022distillation,
title={Dataset Distillation by Matching Training Trajectories},
author={George Cazenavette and Tongzhou Wang and Antonio Torralba and Alexei A. Efros and Jun-Yan Zhu},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2022}
}
Owner
George Cazenavette
Carnegie Mellon University
George Cazenavette
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021