MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

Overview

MultiMix

This repository contains the implementation of MultiMix. Our publications for this project are listed below:

"MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images," by Ayaan Haque, Abdullah-Al-Zubaer Imran, Adam Wang, and Demetri Terzopoulos. In ISBI, 2021.

"Generalized Multi-Task Learning from Substantially Unlabeled Multi-Source Medical Image Data," by Ayaan Haque, Abdullah-Al-Zubaer Imran, Adam Wang, and Demetri Terzopoulos. In MELBA, 2021.

Our proposed model performs joint semi-supervised classification and segmentation by employing a confidence-based augmentation strategy for semi-supervised classification along with a novel saliency bridge module that guides segmentation and provides explainability for the joint tasks.

Abstract

Semi-supervised learning via learning from limited quantities of labeled data has been investigated as an alternative to supervised counterparts. Maximizing knowledge gains from copious unlabeled data benefit semi-supervised learning settings. Moreover, learning multiple tasks within the same model further improves model generalizability. We propose a novel multitask learning model, namely MultiMix, which jointly learns disease classification and anatomical segmentation in a sparingly supervised manner, while preserving explainability through bridge saliency between the two tasks. Our extensive experimentation with varied quantities of labeled data in the training sets justify the effectiveness of our multitasking model for the classification of pneumonia and segmentation of lungs from chest X-ray images. Moreover, both in-domain and cross-domain evaluations across the tasks further showcase the potential of our model to adapt to challenging generalization scenarios.

Model

Figure

For sparingly-supervised classification, we leverage data augmentation and pseudo-labeling. We take an unlabeled image and perform two separate augmentations. A single unlabeled image is first weakly augmented, and from that weakly augmented version of the image, a pseudo-label is assumed based on the prediction from the current state of the model. Secondly, the same unlabeled image is then augmented strongly, and a loss is calculated with the pseudo-label from the weakly augmented image and the strongly augmented image itself. Note that this image-label pair is retained only if the confidence with which the model generates the pseudo-label is above a tuned threshold, which prevents the model from learning from incorrect and poor labels.

For sparingly-supervised segmentation, we generate saliency maps based on the predicted classes using the gradients of the encoder. While the segmentation images do not necessarily represent pneumonia, the classification task, the generated maps highlight the lungs, creating images at the final segmentation resolution. These saliency maps can be used to guide the segmentation during the decoder phase, yielding improved segmentation while learning from limited labeled data. In our algorithm, the generated saliency maps are concatenated with the input images, downsampled, and added to the feature maps input to the first decoder stage. Moreover, to ensure consistency, we compute the KL divergence between segmentation predictions for labeled and unlabeled examples. This penalizes the model from making predictions that are increasingly different than those of the labeled data, which helps the model fit more appropriately for the unlabeled data.

Results

A brief summary of our results are shown below. Our algorithm MultiMix is compared to various baselines. In the table, the best fully-supervised scores are underlined and the best semi-supervised scores are bolded.

Results

Boundaries

Code

The code has been written in Python using the Pytorch framework. Training requries a GPU. We provide a Jupyter Notebook, which can be run in Google Colab, containing the algorithm in a usable version. Open MultiMix.ipynb and run it through. The notebook includes annotations to follow along. Open the sample_data folder and use the classification and segmentation sample images for making predictions. Load multimix_trained_model.pth and make predictions on the provided images. Uncomment the training cell to train the model.

Citation

If you find this repo or the paper useful, please cite:

ISBI Paper

@inproceedings{haque2020multimix,
      author={Haque, Ayaan and Imran, Abdullah-Al-Zubaer and Wang, Adam and Terzopoulos, Demetri},
      booktitle={2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)}, 
      title={Multimix: Sparingly-Supervised, Extreme Multitask Learning from Medical Images}, 
      year={2021},
      volume={},
      number={},
      pages={693-696},
      doi={10.1109/ISBI48211.2021.9434167}
}

MELBA Paper

To be released
Owner
Ayaan Haque
“Major League Hacker 💻” Builder 🧱 Learning about learning
Ayaan Haque
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
Repository containing detailed experiments related to the paper "Memotion Analysis through the Lens of Joint Embedding".

Memotion Analysis Through The Lens Of Joint Embedding This repository contains the experiments conducted as described in the paper 'Memotion Analysis

Nethra Gunti 1 Mar 16, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022