Python rubik's cube solver

Overview

py-rubik_solver

Python solver for a rubik's cube

This program makes a 3D representation of a rubiks cube and solves it step by step.

solving the cube image

Usage

To use this program you need to execute the following commands

  • For 3D visualizations:

    python visualizer.py

  • For statistics:

    python stats.py

Requirements

To use this program you need to install python 3.8.10 or later (although it will probably work on python 3.7) You will also need a recent version of numpy and vpython 7 or later, those can be installed with:

pip install numpy vpython

Implementation

This project is separated in different files, each implementing a different functionality. The content and functionality of each of these files is the following:

configs.py

This file contains general configuration parameters mostly related to the visual representation of the cube:

  • The default colors
  • The number of fps
  • The time taken to reproduce each move
  • Time to wait between moves
  • Speed factor

cube.py

This file contains the Cube class, which implements a data structure for storing the pieces of the cube and some functions for rotating the faces of the cube. It also implements the possibility to shuffle the cube on creation and the possibility of recording a list of moves made in the cube, this is used for generating a solution.

The main functions implemented in this class are:

  • move(move, n=1, record=True): where move should be a string representing the face to move and n is the number of 90 degree rotations to perform (2 is half turn and 3 or -1 is a turn to the other side). The codes used for the move are:

    • "U", "F", "R", "B", "L", "D" for individual faces.
    • "UD", "FB", "RL" for the middle faces.
    • "UU", "FF", "RR" for rotations of the whole cube along this axis.
  • rotate(axis, n=1): this has the same effect as using move with "UU", "FF", "RR" but these moves are never recorded.

  • is_solved(): checks whether the cube equals the solved cube. Keep in mind that this function will return False even if the cube is solved but faces a different way.

  • copy(): creates a deep_copy of the cube. The copy is completely independent of the original cube.

cube_3d.py

This file implements the Cube3D class, which directly inherits from the Cube class. This class overrides the __init__ and move functions to first create all the cubes necessary to represent the rubiks cube in 3D and then animate them each time any face is moved.

cube_solver.py

This file implements the CubeSolver class, which acts as an abstract class for all the other solving algorithms. It only takes care of taking some measures for statistics.

simple_solver.py

This is the first solving algorithm implemented, it's the usual beginer algorithm for anyone learning how to solve the rubiks cube. It's implemented on a really naive way, and it's far from optimal in terms of the number of steps of the solution. It was just a proof of concept and my goal is to implement a better, more efficient version of this class in the future.

In my personal computer this algorithm takes 1.78 ms on average to compute a solution, and the solutions have 205.6 steps on average. Again these results are far from good, but this was just a proof of concept.

The process of the algorithm is separated in different steps, which are:

  • solve_first_cross: solves the cross on the UP face
  • solve_first_corners: solves the corners on the UP face
  • solve_second_row: solves the second "crown" or the second row
  • solve_second_cross: creates a cross on the DOWN face
  • orientate_2nd_cross: positions correctly the pieces inside the cross on the DOWN face
  • solve_second_corners: positions correctly the corners in the DOWN face
  • orientate_2nd_corners: rotates correctly the corners in the DOWN face
  • reorient_cube: rotates the whole cube so that the UP face is facing up and the FRONT face if facing front

stats.py

This file is used to compute some statistics of the cube solutions. At this point this file is used to compute:

  • The average time taken to generate a solution
  • The average number of steps of the generated solutions
  • Some data of the solving process

Keep in mind the data computed will probably change in the future.

util.py

In this file we store different lists and dictionaries used in the project such as a solved cube structure, a list of the directions, a function for generating random moves, ...

visualizer.py

This file is used to launch a 3D representation of the solving process of the cube. It also contains a function to check the progress of the solving algorithm.

Notes

In the future I'm planing to make more solving algorithms as well as an implementation for a physical robot that solves a given cube.

Use this code as you wish, just let me know if you do, I'll love to hear what you are up to!

If you have any doubts/comments/suggestions/anything please let my know via email at [email protected] or at the email in my profile.

Owner
Pablo QB
I'm a student of the double degree on Computer Engineering and Mathematics at UAM university. Here I upload some of my personal proyects just for fun.
Pablo QB
An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports.

Optical_Character_Recognition An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports. As an IOT/Compute

Ramsis Hammadi 1 Feb 12, 2022
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
Creating a virtual tv using opencv in python3.

Virtual-TV Creating a virtual tv using opencv in python3. In order to run the code follow the below given steps: Make sure the desired videos which ar

Vamsi 1 Jan 01, 2022
Textboxes_plusplus implementation with Tensorflow (python)

TextBoxes++-TensorFlow TextBoxes++ re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modifie

81 Dec 07, 2022
a micro OCR network with 0.07mb params.

MicroOCR a micro OCR network with 0.07mb params. Layer (type) Output Shape Param # Conv2d-1 [-1, 64, 8,

william 29 Aug 06, 2022
天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 - 第三名解决方案

天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 比赛链接 个人博客记录 目录结构 ├── final------------------------------------决赛方案PPT ├── preliminary_contest--------------------

19 Aug 17, 2022
A simple Digits Recogniser made in Python

⭐ Python Digit Recogniser A simple digit Recogniser made in Python Demo Run Locally Clone the project git clone https://github.com/yashraj-n/python-

Yashraj narke 4 Nov 29, 2021
Controlling Volume by Hand Gestures

This program allows the user to control the volume of their device with specific hand gestures involving their thumb and index finger!

Riddhi Bajaj 1 Nov 11, 2021
Awesome anomaly detection in medical images

A curated list of awesome anomaly detection works in medical imaging, inspired by the other awesome-* initiatives.

Kang Zhou 57 Dec 19, 2022
Balabobapy - Using artificial intelligence algorithms to continue the text

Balabobapy - Using artificial intelligence algorithms to continue the text

qxtony 1 Feb 04, 2022
Memory tests solver with using OpenCV

Human Benchmark project This project is OpenCV based programs which are puzzle solvers for 7 different games for https://humanbenchmark.com/. made as

Bahadır Araz 24 Dec 27, 2022
Rubik's Cube in pygame with OpenGL

Rubik Rubik's Cube in pygame with OpenGL The script show on the screen a Rubik Cube buit with OpenGL. Then I have also implemented all the possible mo

Gabro 2 Apr 15, 2022
Select range and every time the screen changes, OCR is activated.

ASOCR(Auto Screen OCR) Select range and every time you press Space key, OCR is activated. 範囲を選ぶと、あなたがスペースキーを押すたびに、画面が変わる度にOCRが起動します。 usage1: simple OC

1 Feb 13, 2022
Binarize document images

Binarization Binarization for document images Examples Introduction This tool performs document image binarization (i.e. transform colour/grayscale to

QURATOR-SPK 48 Jan 02, 2023
This project proposes a camera vision based cursor control system, using hand moment captured from a webcam through a landmarks of hand by using Mideapipe module

This project proposes a camera vision based cursor control system, using hand moment captured from a webcam through a landmarks of hand by using Mideapipe module

Chandru 2 Feb 20, 2022
Automatically download multiple papers by keywords in CVPR

CVFPaperHelper Automatically download multiple papers by keywords in CVPR Install mkdir PapersToRead cd PaperToRead pip install requests tqdm git clon

46 Jun 08, 2022
Python package for handwriting and sketching in Jupyter cells

ipysketch A Python package for handwriting and sketching in Jupyter notebooks. Usage A movie is worth a thousand pictures is worth a million words...

Matthias Baer 16 Jan 05, 2023
Automatically fishes for you while you are afk :)

Dank-memer-afk-script A simple and quick way to make easy money in Dank Memer! How to use Open a discord channel which has the Dank Memer bot enabled.

Pranav Doshi 9 Nov 11, 2022
A curated list of papers, code and resources pertaining to image composition

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

BCMI 391 Dec 30, 2022
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.

Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit

sushant097 224 Jan 07, 2023