An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

Overview

CNN-Filter-DB

An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters
Paul Gavrikov, Janis Keuper

Distribution shifts of trained 3x3 convolution filters

Paper: https://openreview.net/forum?id=2st0AzxC3mh

Abstract: We present first empirical results from our ongoing investigation of distribution shifts in image data used for various computer vision tasks. Instead of analyzing the original training and test data, we propose to study shifts in the learned weights of trained models. In this work, we focus on the properties of the distributions of dominantly used 3x3 convolution filter kernels. We collected and publicly provide a data set with over half a billion filters from hundreds of trained CNNs, using a wide range of data sets, architectures, and vision tasks. Our analysis shows interesting distribution shifts (or the lack thereof) between trained filters along different axes of meta-parameters, like data type, task, architecture, or layer depth. We argue, that the observed properties are a valuable source for further investigation into a better understanding of the impact of shifts in the input data to the generalization abilities of CNN models and novel methods for more robust transfer-learning in this domain.

Versions

Number Changes
v1.0 Initial dataset as presented in the NeurIPS 2021 DistShift Workshop

Environment

We have executed this with Python 3.8.8 on Linux 3.10.0-1160.24.1.el7.x86_64. The scripts should however work with most python3 versions and OS.

To install all necessary modules please run:

pip install -r requirements.txt

or install these modules manually with your desired package manager:

numpy==1.21.2
scipy
scikit-learn==0.24.1
matplotlib==3.4.1
pandas==1.1.4
fast-histogram==0.10
KDEpy==1.1.0
tqdm==4.53.0
colorcet==2.0.6
h5py==3.1.0
tables==3.6.1

Prepare

Download dataset.h5 from https://kaggle.com/paulgavrikov/cnn-filter-db. This file contains the filters and meta information as individual datasets.

The filters are linked as a Nx9 numpy.float32 array under the /filter dataset. Every row is one filter and the row number is also the filter ID (i.e. the first row is filter ID 0). To reshape a filter f back to its original shape use f.reshape(3, 3).

The meta information is stored as a pandas.DataFrame under /meta. Following is an out of order list of column keys with a short description. Other column keys can and should be ignored. The table has a Multiindex on [model_id, conv_depth, conv_depth].

Column Description
model_id Unique int ID of the model.
conv_depth Convolution depth of the extracted filter i.e. how many convolution layers were hierarchically below the layer this filter was extracted from.
conv_depth_norm Similar to conv_depth but normalized by the maximum conv_depth. Will be a flaot betwenn 0 (first layers) .. 1 (towards head).
filter_ids List of Filter IDs that belong to this record. These can directly be mapped to the rows of the filter array.
model Unique string ID of the model. Typically, but not reliably in the format {name}{trainingset}{onnx opset}.
producer Producer of the ONNX export. Typically various versions of PyTorch.
op_set Version of the ONNX operator set used for export.
depth Total hierarchical depth of the model including all layers.
Name Name of the model. Not necessarily unique.
Paper Link to the Paper. Not always populated.
Pretraining-Dataset Name of the pretraining dataset(s) if pretrained. Multiple datr sets are seperated by commas.
Training-Dataset Name of the training dataset(s). Multiple datr sets are seperated by commas.
Datatype Visual, manual categorization of the training datatsets.
Task Task of the model.
Accessible Represents where the model can be found. Typically this is a link to GitHub.
Dataset URL URL of the training dataset. Usually only entered for exotic datasets.
total_filters Total number of convolution filters in this model.
3x3_filter_share The share of 3x3 filters compared to all other conv filters.
(X, Y) filters Represents how often filters of shape (X, Y) were found in the source model.
Conv, Add, Relu, MaxPool, Reshape, MatMul, Transpose, BatchNormalization, Concat, Shape, Gather, Softmax, Slice, Unsqueeze, Mul, Exp, Sub, Div, Pad, InstanceNormalization, Upsample, Cast, Floor, Clip, ReduceMean, LeakyRelu, ConvTranspose, Tanh, GlobalAveragePool, Gemm, ConstantOfShape, Flatten, Squeeze, Less, Loop, Split, Min, Tile, Sigmoid, NonMaxSuppression, TopK, ReduceMin, AveragePool, Dropout, Where, Equal, Expand, Pow, Sqrt, Erf, Neg, Resize, LRN, LogSoftmax, Identity, Ceil, Round, Elu, Log, Range, GatherElements, ScatterND, RandomNormalLike, PRelu, Sum, ReduceSum, NonZero, Not Represents how often this ONNX operator was found in the original model. Please note that individual operators may have been fused in later ONNX opsets.

Run

Adjust dataset_path in https://github.com/paulgavrikov/CNN-Filter-DB/blob/main/main.ipynb and run the cells.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{
gavrikov2021an,
title={An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters},
author={Gavrikov, Paul and Keuper, Janis},
booktitle={NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications},
year={2021},
url={https://openreview.net/forum?id=2st0AzxC3mh}
}
Owner
Paul Gavrikov
Paul Gavrikov
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
MARE - Multi-Attribute Relation Extraction

MARE - Multi-Attribute Relation Extraction Repository for the paper submission: #TODO: insert link, when available Environment Tested with Ubuntu 18.0

0 May 11, 2021
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
Vikrant Deshpande 1 Nov 17, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Lacmus Foundation 168 Dec 27, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022