An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

Overview

CNN-Filter-DB

An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters
Paul Gavrikov, Janis Keuper

Distribution shifts of trained 3x3 convolution filters

Paper: https://openreview.net/forum?id=2st0AzxC3mh

Abstract: We present first empirical results from our ongoing investigation of distribution shifts in image data used for various computer vision tasks. Instead of analyzing the original training and test data, we propose to study shifts in the learned weights of trained models. In this work, we focus on the properties of the distributions of dominantly used 3x3 convolution filter kernels. We collected and publicly provide a data set with over half a billion filters from hundreds of trained CNNs, using a wide range of data sets, architectures, and vision tasks. Our analysis shows interesting distribution shifts (or the lack thereof) between trained filters along different axes of meta-parameters, like data type, task, architecture, or layer depth. We argue, that the observed properties are a valuable source for further investigation into a better understanding of the impact of shifts in the input data to the generalization abilities of CNN models and novel methods for more robust transfer-learning in this domain.

Versions

Number Changes
v1.0 Initial dataset as presented in the NeurIPS 2021 DistShift Workshop

Environment

We have executed this with Python 3.8.8 on Linux 3.10.0-1160.24.1.el7.x86_64. The scripts should however work with most python3 versions and OS.

To install all necessary modules please run:

pip install -r requirements.txt

or install these modules manually with your desired package manager:

numpy==1.21.2
scipy
scikit-learn==0.24.1
matplotlib==3.4.1
pandas==1.1.4
fast-histogram==0.10
KDEpy==1.1.0
tqdm==4.53.0
colorcet==2.0.6
h5py==3.1.0
tables==3.6.1

Prepare

Download dataset.h5 from https://kaggle.com/paulgavrikov/cnn-filter-db. This file contains the filters and meta information as individual datasets.

The filters are linked as a Nx9 numpy.float32 array under the /filter dataset. Every row is one filter and the row number is also the filter ID (i.e. the first row is filter ID 0). To reshape a filter f back to its original shape use f.reshape(3, 3).

The meta information is stored as a pandas.DataFrame under /meta. Following is an out of order list of column keys with a short description. Other column keys can and should be ignored. The table has a Multiindex on [model_id, conv_depth, conv_depth].

Column Description
model_id Unique int ID of the model.
conv_depth Convolution depth of the extracted filter i.e. how many convolution layers were hierarchically below the layer this filter was extracted from.
conv_depth_norm Similar to conv_depth but normalized by the maximum conv_depth. Will be a flaot betwenn 0 (first layers) .. 1 (towards head).
filter_ids List of Filter IDs that belong to this record. These can directly be mapped to the rows of the filter array.
model Unique string ID of the model. Typically, but not reliably in the format {name}{trainingset}{onnx opset}.
producer Producer of the ONNX export. Typically various versions of PyTorch.
op_set Version of the ONNX operator set used for export.
depth Total hierarchical depth of the model including all layers.
Name Name of the model. Not necessarily unique.
Paper Link to the Paper. Not always populated.
Pretraining-Dataset Name of the pretraining dataset(s) if pretrained. Multiple datr sets are seperated by commas.
Training-Dataset Name of the training dataset(s). Multiple datr sets are seperated by commas.
Datatype Visual, manual categorization of the training datatsets.
Task Task of the model.
Accessible Represents where the model can be found. Typically this is a link to GitHub.
Dataset URL URL of the training dataset. Usually only entered for exotic datasets.
total_filters Total number of convolution filters in this model.
3x3_filter_share The share of 3x3 filters compared to all other conv filters.
(X, Y) filters Represents how often filters of shape (X, Y) were found in the source model.
Conv, Add, Relu, MaxPool, Reshape, MatMul, Transpose, BatchNormalization, Concat, Shape, Gather, Softmax, Slice, Unsqueeze, Mul, Exp, Sub, Div, Pad, InstanceNormalization, Upsample, Cast, Floor, Clip, ReduceMean, LeakyRelu, ConvTranspose, Tanh, GlobalAveragePool, Gemm, ConstantOfShape, Flatten, Squeeze, Less, Loop, Split, Min, Tile, Sigmoid, NonMaxSuppression, TopK, ReduceMin, AveragePool, Dropout, Where, Equal, Expand, Pow, Sqrt, Erf, Neg, Resize, LRN, LogSoftmax, Identity, Ceil, Round, Elu, Log, Range, GatherElements, ScatterND, RandomNormalLike, PRelu, Sum, ReduceSum, NonZero, Not Represents how often this ONNX operator was found in the original model. Please note that individual operators may have been fused in later ONNX opsets.

Run

Adjust dataset_path in https://github.com/paulgavrikov/CNN-Filter-DB/blob/main/main.ipynb and run the cells.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{
gavrikov2021an,
title={An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters},
author={Gavrikov, Paul and Keuper, Janis},
booktitle={NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications},
year={2021},
url={https://openreview.net/forum?id=2st0AzxC3mh}
}
Owner
Paul Gavrikov
Paul Gavrikov
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 May 27, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

PhaseGuidedControl The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be

X-Mechanics 12 Oct 21, 2022
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022