deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

Overview

deep-table

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

Design

Architecture

As shown below, each pretraining/fine-tuning model is decomposed into two modules: Encoder and Head.

Encoder

Encoder has Embedding and Backbone.

  • Embedding makes continuous/categorical features tokenized or simply normalized.
  • Backbone processes the tokenized features.

Pretraining/Fine-tuning Head

Pretraining/Fine-tuning Head uses Encoder module for training.

Implemented Methods

Available Modules

Encoder - Embedding

  • FeatureEmbedding
  • TabTransformerEmbedding

Encoder - Backbone

  • MLPBackbone
  • FTTransformerBackbone
  • SAINTBackbone

Model - Head

  • MLPHeadModel

Model - Pretraining

  • DenoisingPretrainModel
  • SAINTPretrainModel
  • TabTransformerPretrainModel
  • VIMEPretrainModel

How To Use

Step 0. Install

python setup.py install

# Installation with pip
pip install -e .

Step 1. Define config.json

You have to define three configs at least.

  1. encoder
  2. model
  3. trainer

Minimum configurations are as follows:

from omegaconf import OmegaConf

encoder_config = OmegaConf.create({
    "embedding": {
        "name": "FeatureEmbedding",
    },
    "backbone": {
        "name": "FTTransformerBackbone",
    }
})

model_config = OmegaConf.create({
    "name": "MLPHeadModel"
})

trainer_config = OmegaConf.create({
    "max_epochs": 1,
})

Other parameters can be changed also by config.json if you want.

Step 2. Define Datamodule

from deep_table.data.data_module import TabularDatamodule


datamodule = TabularDatamodule(
    train=train_df,
    validation=val_df,
    test=test_df,
    task="binary",
    dim_out=1,
    categorical_cols=["education", "occupation", ...],
    continuous_cols=["age", "hours-per-week", ...],
    target=["income"],
    num_categories=110,
)

Step 3. Run Training

>> {'accuracy': array([0.8553...]), 'AUC': array([0.9111...]), 'F1 score': array([0.9077...]), 'cross_entropy': array([0.3093...])} ">
from deep_table.estimators.base import Estimator
from deep_table.utils import get_scores


estimator = Estimator(
    encoder_config,      # Encoder architecture
    model_config,        # model settings (learning rate, scheduler...)
    trainer_config,      # training settings (epoch, gpu...)
)

estimator.fit(datamodule)
predict = estimator.predict(datamodule.dataloader(split="test"))
get_scores(predict, target, task="binary")
>>> {'accuracy': array([0.8553...]),
     'AUC': array([0.9111...]),
     'F1 score': array([0.9077...]),
     'cross_entropy': array([0.3093...])}

If you want to train a model with pretraining, write as follows:

from deep_table.estimators.base import Estimator
from deep_table.utils import get_scores


pretrain_model_config = OmegaConf.create({
    "name": "SAINTPretrainModel"
})

pretrain_model = Estimator(encoder_config, pretrain_model_config, trainer_config)
pretrain_model.fit(datamodule)

estimator = Estimator(encoder_config, model_config, trainer_config)
estimator.fit(datamodule, from_pretrained=pretrain_model)

See notebooks/train_adult.ipynb for more details.

Custom Datasets

You can use your own datasets.

  1. Prepare datasets and create DataFrame
  2. Preprocess DataFrame
  3. Create your own datamodules using TabularDatamodule

Example code is shown below.

import pandas as pd

import os,sys; sys.path.append(os.path.abspath(".."))
from deep_table.data.data_module import TabularDatamodule
from deep_table.preprocess import CategoryPreprocessor


# 0. Prepare datasets and create DataFrame
iris = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv')

# 1. Preprocessing pd.DataFrame
category_preprocesser = CategoryPreprocessor(categorical_columns=["species"], use_unk=False)
iris = category_preprocesser.fit_transform(iris)

# 2. TabularDatamodule
datamodule = TabularDatamodule(
    train=iris.iloc[:20],
    val=iris.iloc[20:40],
    test=iris.iloc[40:],
    task="multiclass",
    dim_out=3,
    categorical_columns=[],
    continuous_columns=["sepal_length", "sepal_width", "petal_length", "petal_width"],
    target=["species"],
    num_categories=0,
)

See notebooks/custom_dataset.ipynb for the full training example.

Custom Models

You can also use your Embedding/Backbone/Model. Set arguments as shown below.

estimator = Estimator(
    encoder_config, model_config, trainer_config,
    custom_embedding=YourEmbedding, custom_backbone=YourBackbone, custom_model=YourModel
)

If custom models are set, the attributes name in corresponding configs will be overwritten.

See notebooks/custom_model.ipynb for more details.

TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
Pytorch Lightning 1.2k Jan 06, 2023
Synthetic structured data generators

Join us on What is Synthetic Data? Synthetic data is artificially generated data that is not collected from real world events. It replicates the stati

YData 850 Jan 07, 2023
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Histocartography is a framework bringing together AI and Digital Pathology

Documentation | Paper Welcome to the histocartography repository! histocartography is a python-based library designed to facilitate the development of

155 Nov 23, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022