deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

Overview

deep-table

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

Design

Architecture

As shown below, each pretraining/fine-tuning model is decomposed into two modules: Encoder and Head.

Encoder

Encoder has Embedding and Backbone.

  • Embedding makes continuous/categorical features tokenized or simply normalized.
  • Backbone processes the tokenized features.

Pretraining/Fine-tuning Head

Pretraining/Fine-tuning Head uses Encoder module for training.

Implemented Methods

Available Modules

Encoder - Embedding

  • FeatureEmbedding
  • TabTransformerEmbedding

Encoder - Backbone

  • MLPBackbone
  • FTTransformerBackbone
  • SAINTBackbone

Model - Head

  • MLPHeadModel

Model - Pretraining

  • DenoisingPretrainModel
  • SAINTPretrainModel
  • TabTransformerPretrainModel
  • VIMEPretrainModel

How To Use

Step 0. Install

python setup.py install

# Installation with pip
pip install -e .

Step 1. Define config.json

You have to define three configs at least.

  1. encoder
  2. model
  3. trainer

Minimum configurations are as follows:

from omegaconf import OmegaConf

encoder_config = OmegaConf.create({
    "embedding": {
        "name": "FeatureEmbedding",
    },
    "backbone": {
        "name": "FTTransformerBackbone",
    }
})

model_config = OmegaConf.create({
    "name": "MLPHeadModel"
})

trainer_config = OmegaConf.create({
    "max_epochs": 1,
})

Other parameters can be changed also by config.json if you want.

Step 2. Define Datamodule

from deep_table.data.data_module import TabularDatamodule


datamodule = TabularDatamodule(
    train=train_df,
    validation=val_df,
    test=test_df,
    task="binary",
    dim_out=1,
    categorical_cols=["education", "occupation", ...],
    continuous_cols=["age", "hours-per-week", ...],
    target=["income"],
    num_categories=110,
)

Step 3. Run Training

>> {'accuracy': array([0.8553...]), 'AUC': array([0.9111...]), 'F1 score': array([0.9077...]), 'cross_entropy': array([0.3093...])} ">
from deep_table.estimators.base import Estimator
from deep_table.utils import get_scores


estimator = Estimator(
    encoder_config,      # Encoder architecture
    model_config,        # model settings (learning rate, scheduler...)
    trainer_config,      # training settings (epoch, gpu...)
)

estimator.fit(datamodule)
predict = estimator.predict(datamodule.dataloader(split="test"))
get_scores(predict, target, task="binary")
>>> {'accuracy': array([0.8553...]),
     'AUC': array([0.9111...]),
     'F1 score': array([0.9077...]),
     'cross_entropy': array([0.3093...])}

If you want to train a model with pretraining, write as follows:

from deep_table.estimators.base import Estimator
from deep_table.utils import get_scores


pretrain_model_config = OmegaConf.create({
    "name": "SAINTPretrainModel"
})

pretrain_model = Estimator(encoder_config, pretrain_model_config, trainer_config)
pretrain_model.fit(datamodule)

estimator = Estimator(encoder_config, model_config, trainer_config)
estimator.fit(datamodule, from_pretrained=pretrain_model)

See notebooks/train_adult.ipynb for more details.

Custom Datasets

You can use your own datasets.

  1. Prepare datasets and create DataFrame
  2. Preprocess DataFrame
  3. Create your own datamodules using TabularDatamodule

Example code is shown below.

import pandas as pd

import os,sys; sys.path.append(os.path.abspath(".."))
from deep_table.data.data_module import TabularDatamodule
from deep_table.preprocess import CategoryPreprocessor


# 0. Prepare datasets and create DataFrame
iris = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv')

# 1. Preprocessing pd.DataFrame
category_preprocesser = CategoryPreprocessor(categorical_columns=["species"], use_unk=False)
iris = category_preprocesser.fit_transform(iris)

# 2. TabularDatamodule
datamodule = TabularDatamodule(
    train=iris.iloc[:20],
    val=iris.iloc[20:40],
    test=iris.iloc[40:],
    task="multiclass",
    dim_out=3,
    categorical_columns=[],
    continuous_columns=["sepal_length", "sepal_width", "petal_length", "petal_width"],
    target=["species"],
    num_categories=0,
)

See notebooks/custom_dataset.ipynb for the full training example.

Custom Models

You can also use your Embedding/Backbone/Model. Set arguments as shown below.

estimator = Estimator(
    encoder_config, model_config, trainer_config,
    custom_embedding=YourEmbedding, custom_backbone=YourBackbone, custom_model=YourModel
)

If custom models are set, the attributes name in corresponding configs will be overwritten.

See notebooks/custom_model.ipynb for more details.

Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
OpenMMLab Pose Estimation Toolbox and Benchmark.

Introduction English | 简体中文 MMPose is an open-source toolbox for pose estimation based on PyTorch. It is a part of the OpenMMLab project. The master b

OpenMMLab 2.8k Dec 31, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Model parallel transformers in Jax and Haiku

Mesh Transformer Jax A haiku library using the new(ly documented) xmap operator in Jax for model parallelism of transformers. See enwik8_example.py fo

Ben Wang 4.8k Jan 01, 2023