WTTE-RNN a framework for churn and time to event prediction

Overview

WTTE-RNN

Build Status

Weibull Time To Event Recurrent Neural Network

A less hacky machine-learning framework for churn- and time to event prediction. Forecasting problems as diverse as server monitoring to earthquake- and churn-prediction can be posed as the problem of predicting the time to an event. WTTE-RNN is an algorithm and a philosophy about how this should be done.

Installation

Python

Check out README for Python package.

If this seems like overkill, the basic implementation can be found inlined as a jupyter notebook

Ideas and Basics

You have data consisting of many time-series of events and want to use historic data to predict the time to the next event (TTE). If you haven't observed the last event yet we've only observed a minimum bound of the TTE to train on. This results in what's called censored data (in red):

Censored data

Instead of predicting the TTE itself the trick is to let your machine learning model output the parameters of a distribution. This could be anything but we like the Weibull distribution because it's awesome. The machine learning algorithm could be anything gradient-based but we like RNNs because they are awesome too.

example WTTE-RNN architecture

The next step is to train the algo of choice with a special log-loss that can work with censored data. The intuition behind it is that we want to assign high probability at the next event or low probability where there wasn't any events (for censored data):

WTTE-RNN prediction over a timeline

What we get is a pretty neat prediction about the distribution of the TTE in each step (here for a single event):

WTTE-RNN prediction

A neat sideresult is that the predicted params is a 2-d embedding that can be used to visualize and group predictions about how soon (alpha) and how sure (beta). Here by stacking timelines of predicted alpha (left) and beta (right):

WTTE-RNN alphabeta.png

Warnings

There's alot of mathematical theory basically justifying us to use this nice loss function in certain situations:

loss-equation

So for censored data it only rewards pushing the distribution up, beyond the point of censoring. To get this to work you need the censoring mechanism to be independent from your feature data. If your features contains information about the point of censoring your algorithm will learn to cheat by predicting far away based on probability of censoring instead of tte. A type of overfitting/artifact learning. Global features can have this effect if not properly treated.

Status and Roadmap

The project is under development. The goal is to create a forkable and easily deployable model framework. WTTE is the algorithm but the whole project aims to be more. It's a visual philosophy and an opinionated idea about how churn-monitoring and reporting can be made beautiful and easy.

Pull-requests, recommendations, comments and contributions very welcome.

What's in the repository

  • Transformations
    • Data pipeline transformations (pandas.DataFrame of expected format to numpy)
    • Time to event and censoring indicator calculations
  • Weibull functions (cdf, pdf, quantile, mean etc)
  • Objective functions:
    • Tensorflow
    • Keras (Tensorflow + Theano)
  • Keras helpers
    • Weibull output layers
    • Loss functions
    • Callbacks
  • ~~ Lots of example-implementations ~~

Licensing

  • MIT license

Citation

@MastersThesis{martinsson:Thesis:2016,
    author = {Egil Martinsson},
    title  = {{WTTE-RNN : Weibull Time To Event Recurrent Neural Network}},
    school = {Chalmers University Of Technology},
    year   = {2016},
}

Contributing

Contributions/PR/Comments etc are very welcome! Post an issue if you have any questions and feel free to reach out to egil.martinsson[at]gmail.com.

Contributors (by order of commit)

  • Egil Martinsson
  • Dayne Batten (made the first keras-implementation)
  • Clay Kim
  • Jannik Hoffjann
  • Daniel Klevebring
  • Jeongkyu Shin
  • Joongi Kim
  • Jonghyun Park
Owner
Egil Martinsson
Egil Martinsson
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

757 Dec 30, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022